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Abstract

We construct smooth diffeomorphisms on the disc D2 and the annulus S1 × [0, 1] with
exactly three ergodic invariant measures and prescribed rotation number on the boundary.
Moreover, these diffeomorphisms admit an invariant measurable Riemannian metric and are
weak mixing with respect to the Lebesgue measure on the manifold.
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Introduction

By the well-known Brouwer fixed-point theorem every continuous function on the disc D2 has
a fixed point. Indeed Bourgin proved with the aid of the Brouwer translation theorem that for
every area-preserving orientation-preserving homeomorphism of the disc there is a fixed point
inside the disc ([Bo68]). Hence any area- and orientation-preserving diffeomorphism of the disc
has at least three ergodic invariant measures: The Dirac-measure δ at a fixed point in the interior
of the disc, a measure supported at the boundary and any ergodic component of the area. In
[FK04], §3, Fayad and Katok constructed diffeomorphisms with this minimal number of ergodic
invariant measures. In fact they proved that the set of such diffeomorphisms is a residual subset
in the closure A′

(
D2
)
in the C∞-topology of the conjugates of rotations with conjugacies fixing

every point of the boundary and the fixed points of the action by rotations (the boundary points
and the fixed points of the action are called singularities).
As noted in [FK04] the pictures of rotations and conjugacies are essentially identical on the disc
D2 and the annulus S1× [0, 1]: We have polar coordinates (θ, r) and the rotations of the standard
circle action R = {Rt}t∈S1 are given by Rt (θ, r) = (θ + t, r). In this connection the origin of
the disc, which is a fixed point of the circle action, corresponds to the boundary S1 × {0} in the
case of the annulus (so considering the ergodic invariant measures the δ-measure at the fixed
point of the circle action in the disc-case corresponds to the Lebesgue measure on the boundary
component S1 ×{0}). Since all the conjugation maps of our constructions will coincide with the
identity near r = 0 and r = 1 the differences between the disc and the annulus are insignificant.
For the sake of convenience we will present our constructions in case of the annulus S1 × [0, 1].
In both cases the Lebesgue measure µ on the manifold, the δ-measures at the fixed points of
the rotations and the Lebesgue measures on the boundary components are called the natural
measures.
We will extend the result of [FK04] by constructing diffeomorphisms with the minimal number
of ergodic invariant measures in the restricted space

A′α (M) := {H ◦Rα ◦H−1 : H ∈ Diff∞ (M,µ) , H = id on the singularities}
C∞

for every Liouvillean number α ∈ S1. In addition our constructed diffeomorphisms are weak
mixing with respect to the area and preserve a measurable Riemannian metric. So this result
is in line with [Kun13a], [Kun13b] and [Kun13c], where in extension of [GK00] constructions
of diffeomorphisms with ergodic properties that preserve a measurable Riemannian measure are
exhibited. At this juncture in [Kun13b] and [Kun13c] the number of ergodic invariant measures
for diffeomorphisms on the torus Tm of dimension m ≥ 2 is examined. By [Kun13b], Theorem
1, the set of weak mixing and strictly ergodic diffeomorphisms is a dense Gδ-set in Aα (Tm) =

{h ◦Rα ◦ h−1 : h ∈ Diff∞ (Tm, µ)}
C∞

for every Liouvillean number α. However, other numbers
of ergodic invariant measures are possible as well: According to [Kun13c], Theorem 1, for any
d ∈ N the set of minimal diffeomorphisms preserving exactly d ergodic measures and a measurable
Riemannian metric is dense in Aα (Tm). The second result is connected to [Win01], where for
any d ∈ N A. Windsor constructed minimal diffeomorphisms with d ergodic invariant measures
in A (M) := {h ◦ St ◦ h−1 : h ∈ Diff∞ (M,ν) , t ∈ S1}

C∞

on any compact and connected smooth
boundaryless manifold of dimension m ≥ 2 admitting a free C∞-action S = {St}t∈S1 preserving
a smooth volume ν.
In this paper we consider the manifolds D2 and S1 × [0, 1] with boundary. Indeed we will prove:

Theorem 1. Let M be the disc D2 or the annulus S1× [0, 1] and R = {Rt}t∈S1 be the respective
standard action by rotations. Then there exists a smooth diffeomorphism f ∈ A′α (M) that has
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exactly three ergodic invariant measures, namely the natural measures on M , is weak mixing with
respect to the Lebesgue measure on M and preserves a measurable Riemannian metric.

In section 1.2 we will conclude

Corollary 1. Let M be the disc D2 or the annulus S1× [0, 1] and R = {Rt}t∈S1 be the respective
standard action by rotations. Then the set of smooth diffeomorphisms f ∈ A′α (M) that have
exactly three ergodic invariant measures, namely the natural measures on M , are weak mixing
with respect to the Lebesgue measure on M and preserve a measurable Riemannian metric is a
dense subset of A′α (M) in the C∞-topology.

as well as

Corollary 2. The set of smooth diffeomorphisms f ∈ A′α (M) that have exactly three ergodic
invariant measures, namely the natural measures on M , and are weak mixing with respect to the
Lebesgue measure on M is a residual set (i.e. it contains a dense Gδ-set) in the C∞-topology in
A′α (M).

1 Preliminaries

1.1 Definitions and notations
In addition to the definitions presented in [Kun13a], chapter 1.1., we introduce the subsequent
notations:

Definition 1.1. 1. For a continuous function F : [0, 1]× [−1, 2]→ R

‖F‖0,ext := max
z∈[0,1]×[−1,2]

|F (z)|

2. Let f ∈ Diffk
(
S1 × [−1, 2]

)
with coordinate functions fi be given. Then we consider fi as

a function [0, 1]× [−1, 2]→ R and define

‖Df‖0,ext := max
i,j∈{1,2}

‖Djfi‖0,ext

and

|||f |||k,ext := max
{
‖D~afi‖0,ext ,

∥∥D~a (f−1
i

)∥∥
0,ext : i = 1, 2, ~a with 0 ≤ |~a| ≤ k

}
1.2 Proof of the Corollaries
The main Theorem follows from the subsequent Proposition:

Proposition 1.2. For every Liouvillean number α there is a sequence (αn)n∈N of rational num-
bers αn = pn

qn
satisfying limn→∞ |α− αn| = 0 monotonically and a sequence (hn)n∈N of measure-

preserving diffeomorphisms satisfying hn ◦R 1
qn

= R 1
qn
◦hn as well as hn = id in a neighbourhood

of the boundary, such that the diffeomorphisms fn = Hn ◦Rαn+1 ◦H−1
n with Hn = h1 ◦h2 ◦ ...◦hn

converge in the Diff∞ (M)-topology and the diffeomorphism f = limn→∞ fn has exactly three
ergodic invariant measures (namely the Lebesgue measure µ on M = S1 × [0, 1], the Lebesgue
measures δ0 and δ1 on the boundary components S1×{0} and S1×{1} respectively), is weak mixing
with respect to µ, admits an invariant measurable Riemannian metric and satisfies f ∈ A′α (M).
Furthermore for every ε > 0 the parameters in the construction can be chosen in such a way that
d∞ (f,Rα) < ε.
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By this Proposition weak mixing diffeomorphisms preserving exactly three ergodic measures
as well as a measurable Riemannian metric are dense in A′α (M):
Because ofA′α (M) = {h ◦Rα ◦ h−1 : h ∈ Diff∞ (M,µ) , h = id on the boundary}

C∞

it is enough
to show that for every diffeomorphism h ∈ Diff∞ (M,µ), h = id on the boundary, and every ε > 0
there is a weak mixing diffeomorphism f̃ preserving a measurable Riemannian metric such that
d∞

(
f̃ , h ◦Rα ◦ h−1

)
< ε. For this purpose let h ∈ Diff∞ (M,µ) with h = id on the boundary

and ε > 0 be arbitrary. By [Om74], p. 3, resp. [KM97], Theorem 43.1., Diff∞ (M) is a Lie
group. In particular the conjugating map g 7→ h◦g ◦h−1 is continuous with respect to the metric
d∞. Continuity in the point Rα yields the existence of δ > 0, such that d∞ (g,Rα) < δ implies
d∞
(
h ◦ g ◦ h−1, h ◦Rα ◦ h−1

)
< ε. By Proposition 1.2 we can find a weak mixing diffeomorphism

f with exactly three ergodic invariant measures, f -invariant measurable Riemannian metric ω
and d∞(f,Rα) < δ. Hence f̃ := h ◦ f ◦ h−1 satisfies d∞

(
f̃ , h ◦Rα ◦ h−1

)
< ε. Note that f̃

is weak mixing, has exactly three ergodic measures and preserves the measurable Riemannian
metric ω̃ :=

(
h−1

)∗
ω.

Hence Corollary 1 is deduced from Proposition 1.2.

Moreover, we can show that the set of weak mixing diffeomorphisms is generic in A′α (M)
(i.e. it is a dense Gδ-set) using Proposition 1.2 and the same technique as in [Ha56], section
Category, as well as [Kun13a], Remark 1.9..
Next let Ξ be a countable dense subset of C (M,R). For ρ ∈ Ξ and ε > 0 we consider the set

S (ρ, ε) :={
f ∈ A′α (M) : ∃N ∈ N : inf

ξ∈Θ

∣∣∣∣∣ 1
m

m−1∑
i=0

ρ
(
f i (x)

)
−
∫
M

ρ dξ

∣∣∣∣∣ < ε for every m ≥ N and x ∈M

}

at which Θ is the simplex generated by the measures µ, δ0 and δ1. Obviously such a set S (ρ, ε) is
open. It is also a dense subset of A′α (M) because every constructed diffeomorphism f ∈ A′α (M)
is an element of S (ρ, ε) due to Lemma 4.3 and the set of constructed diffeomorphisms is dense
as seen above. By the same reasoning as at the end of section 4.1⋂

i∈N

⋂
k∈N

S

(
ρi,

1
k

)
,

which as a countable intersection of open and dense sets is a dense Gδ-set, is contained in the
set of diffeomorphisms f ∈ A′α (M) with the natural measures as the only ergodic invariant
measures. Since the intersection of dense Gδ-sets is a dense Gδ-set Corollary 2 is proven.

1.3 Sketch of the proof
The constructions are based on the “approximation by conjugation”-method developed by D.V.
Anosov and A. Katok in [AK70]. Here one constructs successively a sequence of measure-
preserving diffeomorphisms fn = Hn◦Sαn+1 ◦H−1

n , where the conjugation maps Hn = h1◦ ...◦hn
and the rational numbers αn = pn

qn
are chosen in such a way that the functions fn converge to

a diffeomorphism f with the aimed properties. Indeed we have to prove convergence of (fn)n∈N
in A′α

(
S1 × [0, 1]

)
for a prescribed Liouville number α. For it we need careful estimates on the

norms of our explicitly defined conjugation maps in section 3.1.
In our setting the conjugation map hn is made up of three maps introduced in section 2:
hn = gn ◦ D−1

ψn,γn
◦ φn ◦ Dψn,γn , which coincides with the identity in a neighbourhood of the
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boundary.
At this juncture the trapping map Dψn,γn is used to gain control of almost everything of every
orbit

{
Hn ◦Rkαn+1

(x)
}
k=0,...,qn+1−1

with the aid of the trapping regions. This allows us to prove

a convergence result on Birkhoff sums (see Lemma 4.3), which in turn enables us to exclude the
existence of further ergodic invariant measures besides the natural measures.
The conjugation map φn is used to map the trapping regions (which have nearly full length in the
r-coordinate) on sets of small diameter and contrariwise to map elements of a partial partition ηn
on stripes with r-length almost 1. The second property is used in the proof of the weak mixing
property which is based on the notion of a (γ, ε)-distribution. In this proof we also need a map
introducing shear in the θ-coordinate. The map gn has to play this role. Since the conjugation
maps have to act as an isometry on large parts of the manifold in order to construct a f -invariant
measurable Riemannian metric a careful design of each conjugation map is required. The appli-
cation of D−1

ψn,γn
is necessary to make hn to a diffeomorphism onto S1× [0, 1] (see Remark 2.12).

Then we will construct the f -invariant measurable Riemannian metric by the same approach as
in [Kun13a]: The conjugation maps are constructed in such a way that they act as isometries
on elements of a partial partition ζn with respect to the standard metric ω0. Since these par-
tial partitions converge to the decomposition into points we can prove the convergence of the
Riemannian metrics ωn :=

(
H−1
n

)∗
ω0 to a f -invariant measurable Riemannian metric.

2 Explicit constructions

Let r(n) := r(n) = 8 ·n · (n+ 5) and we put εn := 1

4·n11·q5·r(n−1)+1
n−1

. In Remark 4.1 we will explain

this choice of εn. Moreover, σn ∈ (0, 1) is a parameter that will be determined in Remark 3.12.
Furthermore, we fix an arbitrary countable set Ξ = {ρ1, ρ2, ...} of Lipschitz continuous functions
ρi : S1 × [0, 1] → R that is dense in C

(
S1 × [0, 1] ,R

)
. Since C

(
S1 × [0, 1] ,R

)
is separable and

Lipschitz continuous functions are dense in C
(
S1 × [0, 1] ,R

)
this is possible. This set Ξ will be

used in section 4.1 to prove that the natural measures are the only ergodic invariant ones.

2.1 The trapping map
To exclude the existence of further ergodic measures we have to gain control over a large pro-
portion of the orbit

{
Hn ◦Riαn+1

(x)
}
i=0,1,...,qn+1−1

for every x ∈ S1 × [0, 1]. For this purpose

we use for every n ∈ N a smooth map ψn : [0, 1]→ R satisfying

• ψn is non-decreasing on
[
0, 1

2

]
and non-increasing on

[
1
2 , 1
]
.

• ψn is equal to k ·4εn on
[
k
n2 + 1

n4 ,
k+1
n2 − 1

n4

]
for 0 ≤ k ≤

⌊
n2

2

⌋
−1 and ψn is equal to k ·4εn

on
[
n2−k−1
n2 + 1

n4 ,
n2−k
n2 − 1

n4

]
for 0 ≤ k ≤

⌊
n2

2

⌋
− 1. On

[⌊
n2
2

⌋
−1

n2 ,
n2−

⌊
n2
2

⌋
n2

]
it is put to(⌊

n2

2

⌋
− 1
)
· 4εn.

With it we define the map Dψn : [0, 1]× R→ R2 by:

(θ, r) 7→
(
θ, r +

(
1 +

1
q3
n

+
1
q4
n

+ ...+
1

q3+n−1
n

)
· ψn (θ)

)
.
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Using the maps Cγn (θ, r) = (γn · θ, r) we construct the map

Dψn,γn := C−1
γn ◦Dψn ◦ Cγn :

[
0,

1
γn

]
× R→

[
0,

1
γn

]
× R.

Since this map coincides with the identity in a neighbourhood of the boundary of the sector on
the θ-axis we can extend it to a smooth map Dψn,γn : S1 × R → S1 × R using the description
Dψn,γn ◦R l

γn
= R l

γn
◦Dψn,γn for any l ∈ Z. In our construction we use

γn = n · q2+3+4+...+(3+n−1)
n = n · q2+3·n+

n·(n−1)
2

n

Remark 2.1. The trapping map Dψn,γn causes a r-translation by at most 2 ·
(⌊

n2

2

⌋
− 1
)
·4εn ≤

4n2 · εn.

Remark 2.2. We have Dψn,γn

(
S1 × [0, 1]

)
⊂ S1 × [−1, 2]. This motivates our definition of

‖·‖0,ext and is used in the norm estimates in section 3.1 implicitly.

2.2 Trapping regions
We introduce three kind of trapping regions:
In the interior of S1 × [0, 1] and for l ∈ Z as well as k = 0, ..., n− 1 we consider the sets

Sint
l,k,j

(1)
1 , ~j2

=

⋃[
l

qn
+

k

n · qn
+

j
(1)
1

n · q2
n

+
t
(1)
1

n · q3
n

+ ...+
t
(3·k+

k·(k−1)
2 )

1

n · q2+3+4+...+(3+k−1)
n

+
j

(1)
2

n · q2+3+4+...+(3+k−1)+1
n

+ ...

+
j

(3+k)
2

n · q2+3+4+...+(3+k−1)+3+k
n

+
t
(3·k+

k·(k−1)
2 +1)

1

n · q2+3+...+(3+k−1)+(3+k)+1
n

+ ...+
t
(3·(n−1)+

n·(n−1)
2 −k)

1

γn
+

1
n4 · γn

,

l

qn
+

k

n · qn
+ ...+

t
(3·(n−1)+

n·(n−1)
2 −k)

1 + 1
γn

− 1
n4 · γn

]

×

[
t
(1)
2

qn
+ ...+

t
(3+k)
2

q3+k
n

+
εn

q3+k
n

,
t
(1)
2

qn
+ ...+

t
(3+k)
2 + 1
q3+k
n

− εn

q3+k
n

]

where the union is taken over t(j)1 ∈ Z, 0 ≤ t(j)1 ≤ qn−1, for j = 1, ..., 3 ·(n−1)+ n·(n−1)
2 −k apart

from t
(3·k+

k·(k−1)
2 +1)

1 satisfying dεn · qne ≤ t
(3·k+

k·(k−1)
2 +1)

1 ≤ qn−dεn · qne−1 as well as t(1)
2 ∈ Z,⌈(

4n2 + 1
)
εn · qn

⌉
≤ t

(1)
2 ≤ qn −

⌈(
4n2 + 1

)
εn · qn

⌉
− 1 as well as t(l)2 ∈ Z, 0 ≤ t

(l)
2 ≤ qn − 1, for

l = 2, ..., 3 + k.

Then the set of trapping regions of the first kind consists of all sets D−1
ψn,γn

(
Sint
l,k,j

(1)
1 , ~j2

)
, where

all j(1)
i ∈ Z satisfy

⌈
18n2εn · qn

⌉
≤ j

(1)
i ≤ qn −

⌈
18n2εn · qn

⌉
− 1 for i = 1, 2 and j

(s)
2 ∈ Z,

0 ≤ j(s)
2 ≤ qn − 1 for s = 2, ..., 3 + k.

In the neighbourhood of the boundary S1 × {0} we introduce the trapping regions of the

second kind S̃0

l,k,j
(1)
1 , ~j2

:= D−1
ψn,γn

(
S0

l,k,j
(1)
1 , ~j2

)
∩
(
S1 × [0, 1]

)
, at which
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S0

l,k,j
(1)
1 , ~j2

=

⋃[
l

qn
+

k

n · qn
+

j
(1)
1

n · q2
n

+
t
(1)
1

n · q3
n

+ ...+
t
(3·k+

k·(k−1)
2 )

1

n · q2+3+4+...+(3+k−1)
n

+
j

(1)
2

n · q2+3+4+...+(3+k−1)+1
n

+ ...

+
j

(3+k)
2

n · q2+3+4+...+(3+k−1)+3+k
n

+
t
(3·k+

k·(k−1)
2 +1)

1

n · q2+3+...+(3+k−1)+(3+k)+1
n

+ ...+
t
(3·(n−1)+

n·(n−1)
2 −k)

1

γn
+

1
n4 · γn

,

l

qn
+

k

n · qn
+ ...+

t
(3·(n−1)+

n·(n−1)
2 −k)

1 + 1
γn

− 1
n4 · γn

]
×
[
0, 4 · n2 · εn

]
where the union is taken over all t(j)1 ∈ Z, 0 ≤ t(j)1 ≤ qn− 1, for j = 1, ..., 3 · (n− 1) + n·(n−1)

2 − k

apart from t
(3·k+

k·(k−1)
2 +1)

1 satisfying dεn · qne ≤ t
(3·k+

k·(k−1)
2 +1)

1 ≤ qn − dεn · qne − 1.
Then the set of trapping regions of the second kind consists of all sets S̃0

l,k,j
(1)
1 , ~j2

, where all j(1)
i ∈ Z

satisfy
⌈
18n2εn · qn

⌉
≤ j

(1)
i ≤ qn −

⌈
18n2εn · qn

⌉
− 1 for i = 1, 2 and j(s)

2 ∈ Z, 0 ≤ j
(s)
2 ≤ qn − 1

for s = 2, ..., 3 + k.

In the neighbourhood of the boundary S1×{1} we introduce the trapping regions of the third

kind S̃1

l,k,j
(1)
1 , ~j2

:= D−1
ψn,γn

(
S1

l,k,j
(1)
1 , ~j2

)
∩
(
S1 × [0, 1]

)
, at which

S1

l,k,j
(1)
1 , ~j2

=

⋃[
l

qn
+

k

n · qn
+

j
(1)
1

n · q2
n

+
t
(1)
1

n · q3
n

+ ...+
t
(3·k+

k·(k−1)
2 )

1

n · q2+3+4+...+(3+k−1)
n

+
j

(1)
2

n · q2+3+4+...+(3+k−1)+1
n

+ ...

+
j

(3+k)
2

n · q2+3+4+...+(3+k−1)+3+k
n

+
t
(3·k+

k·(k−1)
2 +1)

1

n · q2+3+...+(3+k−1)+(3+k)+1
n

+ ...+
t
(3·(n−1)+

n·(n−1)
2 −k)

1

γn
+

1
n4 · γn

,

l

qn
+

k

n · qn
+ ...+

t
(3·(n−1)+

n·(n−1)
2 −k)

1 + 1
γn

− 1
n4 · γn

]
×
[
1− 4 · n2 · εn, 1

]
where the union is taken over all t(j)1 ∈ Z, 0 ≤ t(j)1 ≤ qn− 1, for j = 1, ..., 3 · (n− 1) + n·(n−1)

2 − k

apart from t
(3·k+

k·(k−1)
2 +1)

1 satisfying dεn · qne ≤ t
(3·k+

k·(k−1)
2 +1)

1 ≤ qn − dεn · qne − 1.
Then the set of trapping regions of the third kind consists of all sets S̃1

l,k,j
(1)
1 , ~j2

, where all j(1)
i ∈ Z

satisfy
⌈
18n2εn · qn

⌉
≤ j

(1)
i ≤ qn −

⌈
18n2εn · qn

⌉
− 1 for i = 1, 2 and j(s)

2 ∈ Z, 0 ≤ j
(s)
2 ≤ qn − 1

for s = 2, ..., 3 + k.

Remark 2.3. By the requirements on the numbers t(u)
1 and j(u)

i all blocks overlying 1
γn

-sections
on the θ-axis, that are part of trapping regions belonging to one kind are also part of trapping
regions belonging to the other kinds.
Let x = (θ, r) ∈ S1 × [0, 1] be arbitrary. By the construction of the map D̄ψn there are at
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most four sections
[
k
n2 + 1

n4 ,
k+1
n2 − 1

n4

]
on the domain [0, 1] such that r does not belong to ei-

ther ψ−1
n

([
k
n2 + 1

n4 ,
k+1
n2 − 1

n4

]
×
[
0, 4n2 · εn

])
, ψ−1

n

([
k
n2 + 1

n4 ,
k+1
n2 − 1

n4

]
×
[
1− 4n2 · εn, 1

])
or

ψ−1
n

([
k
n2 + 1

n4 ,
k+1
n2 − 1

n4

]
×
[(

4n2 + 1
)
· εn, 1−

(
4n2 + 1

)
· εn
])
.

We have to bear the gaps of our trapping region in the r-coordinate in mind. Therefore we note
that

(
1 + 1

q3
n

+ ...+ 1

q3+k−1
n

)
·4εn is a multiple of 1

q3+k
n

and this translates by full 1

q3+k
n

-blocks in the

r-coordinate. Hence there are at most four further sections
[

k
n2γn

+ 1
n4γn

, k+1
n2γn

− 1
n4γn

]
on
[
0, 1

γn

]
such that r does not belong to either D−1

ψn,γn

([
k

n2γn
+ 1

n4γn
, k+1
n2γn

− 1
n4γn

]
×
[
0, 4n2 · εn

])
or

D−1
ψn,γn

([
k

n2γn
+ 1

n4γn
, k+1
n2γn

− 1
n4γn

]
×
[
t
(1)
2
qn

+ ...+ t
(3+k)
2

q3+k
n

+ εn
q3+k
n

,
t
(1)
2
qn

+ ...+ t
(3+k)
2 +1

q3+k
n

− εn
q3+k
n

])
or

D−1
ψn,γn

([
k

n2γn
+ 1

n4γn
, k+1
n2γn

− 1
n4γn

]
×
[
1− 4n2 · εn, 1

])
.

For l = 0, ..., qn − 1, k = 0, 1, ..., n − 1 a trapping region on
[
l
qn

+ k
n·qn ,

l
qn

+ k+1
n·qn

]
× [0, 1]

consists of at least (1− 3 · εn) · q3n+
n·(n−1)

2 −(3+k)
n many 1

γn
-sections. We fix l, k, j(1)

1 , ~j2. Since
{i · αn+1}i=0,...,qn+1−1 is equidistributed on S1 the number of iterates i, such that the orbit{
Riαn+1

(x)
}
i=0,...,qn+1−1

is captured by one of the 3 trapping regions D−1
ψn,γn

(
St
l,k,j

(1)
1 , ~j2

)
∩(

S1 × [0, 1]
)
, t ∈ {int, 0, 1}, is at least

(1− 3 · εn) · q3n+
n·(n−1)

2 −(3+k)
n ·

(
n2 − 8

)
·
⌊
qn+1 ·

1− 2
n2

n2 · γn

⌋
.

Depending on the point x ∈ S1 × [0, 1] there is a portion $n
t (x) of these iterates spent in

trapping regions of the specific kind, t ∈ {int, 0, 1}. This portion does not depend on the indices
l, k, j

(1)
1 , ~j2. Then the number of iterates i, such that the orbit

{
Riαn+1

(x)
}
i=0,...,qn+1−1

meets

an arbitrary trapping region D−1
ψn,γn

(
St
l,k,j

(1)
1 , ~j2

)
∩
(
S1 × [0, 1]

)
, is not less than

q
3n+

n·(n−1)
2 −(3+k)

n ·$n
t (x) ·

(
n2 − 8

)
· qn+1 ·

1− 4
n2

n2 · γn

≥$n
t (x) · qn+1 ·

(
n2 − 8

)
·

1− 4
n2

n3 · q2+3+k
n

≥$n
t (x) · qn+1 ·

(
1− 12

n2

)
· 1
n · q5+k

n

iterates. Moreover, for every t ∈ {int, 0, 1} there are
(
qn − 2 ·

⌈
18n2εn · qn

⌉)2 · q2+k
n trapping

regions of the specific kind on
[
l
qn

+ k
n2·qn ,

l
qn

+ k+1
n2·qn

]
×Nt × Tm−2 for l = 0, ..., qn − 1 as well

as k = 0, ..., n− 1 and so not less than

(
qn − 2 ·

⌈
18n2εn · qn

⌉)2 · q2+k
n · qn+1 ·

(
1− 12

n2

)
· 1

n · q2+(3+k)
n

≥qn+1 ·
(

1− 1
n6

)2

·
(

1− 12
n2

)
· 1
n · qn

≥ qn+1 ·
(

1− 14
n2

)
· 1
n · qn

iterates are trapped here. Altogether at least qn+1 ·
(
1− 14

n2

)
iterates are captured.
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Remark 2.4. On the contrary at most 14
n2 · qn+1 iterates are not captured by the trapping

regions.

2.3 Sequences of partial partitions
In this subsection we define the two announced sequences of partial partitions (ηn)n∈N and
(ζn)n∈N of M = S1 × [0, 1].

2.3.1 Partial partition ηn

Initially ηn will be constructed on the fundamental sector
[
0, 1

qn

]
× [0, 1]. For this purpose we

divide the fundamental sector in n sections:

• On
[

k
n·qn ,

k+1
n·qn

]
× [0, 1] in case of k ∈ N and 0 ≤ k ≤ n− 2 the partial partition ηn consists

of all multidimensional intervals of the following form:[
k

n · qn
+

j
(1)
1

n · q2
n

+ ...+
j
(1+3·(k+1)+

k·(k+1)
2 )

1

n · q2+3·(k+1)+
k·(k+1)

2
n

+
18n2 · εn

n · q2+3·(k+1)+
k·(k+1)

2
n

,

k

n · qn
+

j
(1)
1

n · q2
n

+ ...+
j
(1+3·(k+1)+

k·(k+1)
2 )

1 + 1

n · q2+3·(k+1)+
k·(k+1)

2
n

− 18n2 · εn

n · q2+3·(k+1)+
k·(k+1)

2
n

]

×

[
j

(1)
2

qn
+ ...+

j
(3+k+1)
2

q3+k+1
n

+
εn

4 · q3+k+1
n

,
j

(1)
2

qn
+ ...+

j
(3+k+1)
2 + 1
q3+k+1
n

− εn

4 · q3+k+1
n

]

where j(l)
2 ∈ Z,

⌈
18n2 · εn · qn

⌉
≤ j(l)

2 ≤ qn −
⌈
18n2 · εn · qn

⌉
− 1 for l = 1, ..., 3 + k + 1 and

j
(l)
1 ∈ Z,

⌈
18n2 · εn · qn

⌉
≤ j(l)

1 ≤ qn−
⌈
18n2 · εn · qn

⌉
−1 for l = 1, ..., 1+3·(k + 1)+ k·(k+1)

2 .

• On
[
n−1
n·qn ,

1
qn

]
× [0, 1] there are no elements of the partial partition ηn.

As the image under Rl/qn with l ∈ Z this partial partition of
[
0, 1

qn

]
× [0, 1] is extended to a

partial partition of S1 × [0, 1].

Remark 2.5. By construction this sequence of partial partitions converges to the decomposition
into points.

2.3.2 Partial partition ζn

As in the previous case we will construct the partial partition ζn on the fundamental sector[
0, 1

qn

]
× [0, 1] initially and therefore divide this sector into n sections:

On
[

k
n·qn ,

k+1
n·qn

]
× [0, 1] in case of k ∈ N and 0 ≤ k ≤ n− 1 the partial partition ζn consists of all

sets Γ̌n = D−1
ψn,γn

(
Ǐn
)
, where Ǐn is a multidimensional interval of the following form:
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[
k

n · qn
+

j
(1)
1

n · q2
n

+ ...+
j
(1+3·n+

n·(n−1)
2 )

1

γn
+

s

n2 · γn
+

1
n4 · γn

,

k

n · qn
+

j
(1)
1

n · q2
n

+ ...+
j
(1+3·n+

n·(n−1)
2 )

1

γn
+

s+ 1
n2 · γn

− 1
n4 · γn

]

×

[
j

(1)
2

qn
+ ...+

j
(3+k+1)
2

q3+k+1
n

+ ...+
j
(2+3·(k+1)+

k·(k+1)
2 )

2

q
2+3·(k+1)+

k·(k+1)
2

n

+

j
(3+3·(k+1)+

k·(k+1)
2 )

2 · 16n2 · εn

n · q2+3·(k+1)+
k·(k+1)

2
n · [nqσnn ]

+
1600n4 · ε2

n

n · q2+3·(k+1)+
k·(k+1)

2
n · [nqσnn ]

,

j
(1)
2

qn
+ ...+

(
j
(3+3·(k+1)+

k·(k+1)
2 )

2 + 1
)
· 16n2 · εn

n · q2+3·(k+1)+
k·(k+1)

2
n · [nqσnn ]

− 1600n4 · ε2
n

n · q2+3·(k+1)+
k·(k+1)

2
n · [nqσnn ]

]

where j(l)
1 ∈ Z and

⌈
100n2 · εn · qn

⌉
≤ j(l)

1 ≤ qn−
⌈
100n2 · εn · qn

⌉
−1 for l = 1, ..., 1+3·n+ n·(n−1)

2 ,
j

(l)
2 ∈ Z and

⌈
100n2 · εn · qn

⌉
≤ j(l)

2 ≤ qn−
⌈
100n2 · εn · qn

⌉
−1 for l = 1, ..., 2+3·(k + 1)+ k·(k+1)

2 ,

j
(3+3(k+1)+

k(k+1)
2 )

2 ∈ Z, [nqσnn ] · n ≤ j
(3+3(k+1)+

k(k+1)
2 )

2 ≤ [nqσnn ]
16n·εn − [nqσnn ] · n− 1 as well as s ∈ N

and 0 ≤ s ≤ n2 − 1.

Remark 2.6. For every n the partial partition ζn consists of disjoint sets, covers a set of measure
at least 1 − 3

n2 in case of n ≥ 3 and the sequence (ζn)n∈N converges to the decomposition into
points.

Remark 2.7. Note that Dψn,γn acts as an isometry on all the partition elements Γ̌n ∈ ζn.

2.4 The conjugation map gn

Let a, b ∈ Z and ε ∈
(
0, 1

16

]
such that 1

ε ∈ Z. Moreover, we consider δ > 0, such that 1
δ ∈ Z and

a·b·δ
ε ∈ Z. We denote [0, 1]2 by ∆ and [ε, 1− ε]2 by ∆ (ε). In this setting we recall [Kun13a],

Lemma 2.4.:

Lemma 2.8. For every ε ∈
(
0, 1

16

]
there exists a smooth measure-preserving diffeomorphism

gε : [0, 1]2 → {(x+ ε · y, y) : x, y ∈ [0, 1]}, that is the identity on ∆ (4ε) and coincides with the
map (x, y) 7→ (x+ ε · y, y) on ∆ \∆ (ε).

Let b ∈ Z, g̃b : S1 × [0, 1] → S1 × [0, 1] be the smooth measure-preserving diffeomorphism
given by g̃b (θ, r) = (θ + b · r, r) and denote

[
0, 1

a

]
×
[
0, ε

b·a
]
by ∆a,b,ε. Using the map Da,b,ε :

R2 → R2, (θ, r) 7→
(
a · θ, b·aε · r

)
and gε from Lemma 2.8 we define the measure-preserving diffeo-

morphism ga,b,ε : ∆a,b,ε → g̃b (∆a,b,ε) by ga,b,ε = D−1
a,b,ε ◦ gε ◦Da,b,ε. Using the fact that a·b·δ

ε ∈ Z
we extend it to a smooth diffeomorphism ga,b,ε,δ :

[
0, 1

a

]
× [δ, 1− δ] → g̃b

([
0, 1

a

]
× [δ, 1− δ]

)
by

the description:
ga,b,ε,δ

(
θ, r + l · ε

b · a

)
=
(
l · ε
a
, l · ε

b · a

)
+ ga,b,ε (θ, r)

for r ∈
[
0, ε

b·a
]
and l ∈ Z satisfying δ

ε · b · a ≤ l ≤
1−δ
ε · b · a− 1.

With the choice δ = 12n2 · εn we construct the smooth measure-preserving diffeomorphism gn
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on the fundamental sector
[
0, 1

qn

]
×
[
12n2 · εn, 1− 12n2 · εn

]
initially and for this divide it into

n sections:
On

[
k

n·qn ,
k+1
n·qn

]
×
[
12n2 · εn, 1− 12n2 · εn

]
in case of k ∈ Z and 0 ≤ k ≤ n− 1:

gn = g
n·q

2+3·(k+1)+ (k+1)·k
2

n ,[n·qσnn ],16n2·εn,12n2·εn

Since gn coincides with the map g̃[n·qσnn ] in a neighbourhood of the boundary of the different
sections on the θ-axis this yields a smooth map and we can extend it to a smooth measure-
preserving diffeomorphism on S1 ×

[
12n2 · εn, 1− 12n2 · εn

]
using the description gn ◦ R l

qn
=

R l
qn
◦ gn for l ∈ Z.

Moreover, let χn : [0, 1]→ [0, 1] be a smooth function satisfying the subsequent properties:

• χn is equal to 0 on
[
0, 4n2 · εn

]
as well as on

[
1− 8n2 · εn, 1

]
. On

[
6n2 · εn, 1− 10n2 · εn

]
χn takes the value 1.

• χn is non-decreasing on
[
4n2 · εn, 6n2 · εn

]
and non-increasing on

[
1− 10n2 · εn, 1− 8n2 · εn

]
.

With it we define gn : S1 ×
[
0, 12n2 · εn

]
→ S1 ×

[
0, 12n2 · εn

]
and gn : S1 ×

[
1− 12n2 · εn, 1

]
→

S1 ×
[
1− 12n2 · εn, 1

]
by

gn (θ, r) = (θ + χn (r) · [n · qσnn ] · r, r)

Since all the constructed maps gn coincide with g̃[nqσnn ] in a neighbourhood of the boundary of
the respective domain we can piece them together smoothly to a diffeomorphism gn : S1×[0, 1]→
S1 × [0, 1].
We note that the assumption a·b·δ

ε = a·b·3
4 ∈ Z is satisfied, because 1

εn
= 4 · n11 · q5·r(n−1)+1

n−1

divides qn by our construction of the sequence (αn)n∈N in Lemma 3.8. Moreover, gn = id in the
neighbourhoods S1 ×

[
0, 4n2 · εn

]
and S1 ×

[
1− 8n2 · εn, 1

]
of the boundary components.

Remark 2.9. We will call the parts of the domains ∆a,b,ε,δ corresponding to ∆ (4ε) of gε the
“good area” of gn.

2.5 The conjugation map φn

We modify [Kun13a], Lemma 2.6.:

Lemma 2.10. For every j ∈ N and 0 < ε < 1
4·j there exists a smooth measure-preserving

diffeomorphism ϕε,j on R2, which is the rotation in the plane by π/2 about the point
(

1
2 ,

1
2

)
∈ R2

on [(j + 1) · ε, 1− (j + 1) · ε]2 and coincides with the identity outside of [j · ε, 1− j · ε]2.

Proof. First of all we introduce the notation ∆ (ε) := [ε, 1− ε]2. Let ψε be a smooth diffeomor-
phism satisfying

ψε (x, y) =

{
(x, y) on R2 \∆ (j · ε)(

1
2 + 1

5 ·
(
x− 1

2

)
, 1

2 + 1
5 ·
(
y − 1

2

))
on ∆ ((j + 1) · ε)

Furthermore let τε be a smooth diffeomorphism with the following properties

τε (x, y) =

(1− y, x) on
{(
x− 1

2

)2 +
(
y − 1

2

)2 ≤ 1
50

}
(x, y) on

{(
x− 1

2

)2 +
(
y − 1

2

)2 ≥ 1
16

}
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We define ϕ̄ε := ψ−1
ε ◦ τε ◦ ψε. Then the diffeomorphism ϕ̄ε coincides with the rotation on

∆ ((j + 1) · ε) and with the identity on R2 \∆ (j · ε). From this we conclude that det (Dϕ̄ε) > 0.
Moreover ϕ̄ε is measure-preserving on Uε :=

(
R2 \∆ (j · ε)

)
∪∆ ((j + 1) · ε).

As in the proof of [Kun13a], Lemma 2.4., we construct a diffeomorphism ϕε, that is measure-
preserving on the whole R2 and agrees with ϕ̄ε on Uε with the aid of “Moser’s trick”.

Furthermore, for λ ∈ N we define the maps Cλ (x1, x2) = (λ · x1, x2) and Dλ (x1, x2) =
(λ · x1, λ · x2). Let µ ∈ N, 1

δ ∈ N and 1
δ divides µ. We construct a diffeomorphism ψµ,δ,ε2 in the

following way:

• Consider [0, 1− 2δ]2: Since 1
δ divides µ we can divide [0, 1− 2δ]2 in cubes of sidelength 1

µ .

• Under the map Dµ any of these cubes of the form
∏2
i=1

[
li
µ ,

li+1
µ

]
with li ∈ N is mapped

onto
∏2
i=1 [li, li + 1].

• On [0, 1]2 we will use the diffeomorphism ϕ−1
ε2,1

constructed in Lemma 2.10. Since this is
the identity outside of ∆ (ε2) we can extend it to a diffeomorphism ϕ̄−1

ε2,1
on R2 using the

instruction ϕ̄−1
ε2,1

(x1 + k1, x2 + k2) = (k1, k2) + ϕ−1
ε2,1

(x1, x2), where ki ∈ Z and xi ∈ [0, 1].

• Now we define the smooth measure-preserving diffeomorphism

ψ̃µ,δ,ε2 = D−1
µ ◦ ϕ̄−1

ε2,1
◦Dµ : [0, 1− 2δ]2 → [0, 1− 2δ]2

• Hereby we define

ψµ,δ,ε2 (x1, x2) ={([
ψ̃µ,δ,ε2 (x1 − δ, x2 − δ)

]
1

+ δ,
[
ψ̃µ,δ,ε2 (x1 − δ, x2 − δ)

]
2

+ δ
)

on [δ, 1− δ]2

(x1, x2) else

This is a smooth map because ψ̃µ,δ,ε2 is the identity in a neighbourhood of the boundary
by the construction.

Remark 2.11. For every set W =
∏2
i=1

[
li
µ + ri,

li+1
µ − ri

]
, where li ∈ Z and ri ∈ R satisfies

|ri · µ| ≤ ε2, we have ψµ,δ,ε2 (W ) = W .

Using these maps we build the following smooth measure-preserving diffeomorphism φ̃λ,ε,j,µ,δ,ε2 :[
0, 1

λ

]
× R→

[
0, 1

λ

]
× R:

φ̃λ,ε,j,µ,δ,ε2 = C−1
λ ◦ ψµ,δ,ε2 ◦ ϕε,j ◦ Cλ

Afterwards φ̃λ,ε,j,µ,δ,ε2 is extended to a diffeomorphism on S1 × R by the description

φ̃λ,ε,j,µ,δ,ε2

(
x1 +

k1

λ
, x2 + k2

)
=
(
k1

λ
, k2

)
+ φ̃λ,ε,j,µ,δ,ε2 (x1, x2)

for ki ∈ Z.
For convenience we will use the following notation: φ̃λ,µ = φ̃λ,εn,4n2,µ,4n2·εn, εn3 . Hereby we

define the diffeomorphism φn on the fundamental sector: On
[

k
n·qn ,

k+1
n·qn

]
× R in case of k ∈ N

and 0 ≤ k ≤ n− 1

φn = φ̃
n·q2+3+4+...+(3+k−1)

n ,q3+k
n

= φ̃
n·q

2+3k+ k·(k−1)
2

n ,q3+k
n

Now we extend φn to a diffeomorphism on S1 × R using the description φn ◦R 1
qn

= R 1
qn
◦ φn.



Convergence of (fn)n∈N in Diff∞
(
S1 × [0, 1] , µ

)
13

Remark 2.12. Since ϕε,j coincides with the identity outside of ∆ (j · ε) = [j · ε, 1− j · ε]2 we
have φn

(
Dψn,γn

(
S1 × [0, 1]

))
= Dψn,γn

(
S1 × [0, 1]

)
. Hence D−1

ψn,γn
◦ φn ◦Dψn,γn : S1 × [0, 1]→

S1 × [0, 1].

3 Convergence of (fn)n∈N in Diff∞
(
S1 × [0, 1] , µ

)
In the following we show that the sequence of constructed measure-preserving smooth diffeomor-
phisms fn = Hn◦Rαn+1 ◦H−1

n converges. For this purpose we need a couple of results concerning
the conjugation maps.

3.1 Properties of the conjugation maps φn and Hn

In this subsection we want to find estimates on the norms |‖Hn‖|k. For this we have to estimate
the norms of the occurrent maps.

Lemma 3.1. For every k ∈ N it holds

|‖Dψn,γn‖|k,ext ≤ C · γ
k
n

where C is a constant depending on n and k, but is independent of qn.

Proof. By construction of the map Dψn,γn = C−1
γn ◦ D̄ψn ◦ Cγn we have

Dψn,γn (θ, r) = (θ, r + dn · ψn (γn · θ))

as well as
D−1
ψn,γn

(θ, r) = (θ, r − dn · ψn (γn · θ))

using the abbreviation dn := 1 + 1
qn

+ ...+ 1
q3+n−1
n

.

Since dn ≤ 2 we obtain: |‖Dψn,γn‖|k,ext ≤ C̃ · dn · γ
k
n ≤ C · q

k·(2+3·n+
n·(n−1)

2 )
n .

Remark 3.2. In the proof of the following Lemmas we will use the formula of Faà di Bruno
in several variables. It can be found in the paper “A multivariate Faà di Bruno formula with
applications” ([CS96]) for example.
Therefor we introduce an ordering on Nd0: For multiindices ~µ = (µ1, ..., µd) and ~ν = (ν1, ..., νd)
in Nd0 we will write ~µ ≺ ~ν, if one of the following properties is satisfied:

1. |~µ| < |~ν|, where |~µ| =
∑d
i=1 µi.

2. |~µ| = |~ν| and µ1 < ν1

3. |~µ| = |~ν|, µi = νi for 1 ≤ i ≤ k and µk+1 < νk+1 for a 1 ≤ k < d

Additionally we will use these notations:

• For ~ν = (ν1, ..., νd) ∈ Nd0:

~ν! =
d∏
i=1

νi!
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• For ~ν = (ν1, ..., νd) ∈ Nd0 and ~z = (z1, ..., zd) ∈ Rd:

~z ~ν =
d∏
i=1

zνii

Then we get for the composition h (x1, ..., xd) := f
(
g(1) (x1, ..., xd) , ..., g(m) (x1, ..., xd)

)
with

sufficiently differentiable functions f : Rm → R, g(i) : Rd → R and a multiindex ~ν ∈ Nd0 with
|~ν| = n:

D~νh =
∑

~λ∈Nm0 with 1≤|~λ|≤n
D~λf ·

n∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

[
D~lj~g

]~kj
~kj ! ·

(
~lj !
)|~kj|

Hereby
[
D~lj~g

]
denotes

(
D~ljg

(1), ..., D~ljg
(m)
)
and

ps

(
~ν,~λ

)
:={(

~k1, ...,~ks,~l1, ...,~ls

)
: ~ki ∈ Nm0 ,

∣∣∣~ki∣∣∣ > 0,~li ∈ Nd0, 0 ≺ ~l1 ≺ ... ≺ ~ls,
s∑
i=1

~ki = ~λ and
s∑
i=1

∣∣∣~ki∣∣∣ ·~li = ~ν

}

With the aid of these technical results we can prove an estimate on the norms of the map φn:

Lemma 3.3. For every k ∈ N it holds

|||φn|||k,ext ≤ C · γkn

where C is a constant depending on k and n, but is independent of qn.

Proof. First of all we consider the map φ̃λ,µ := φ̃λ,ε,j,µ,δ,ε2 = C−1
λ ◦ψµ,δ,ε2 ◦ϕε,j ◦Cλ introduced

in subsection 2.5:

φ̃λ,µ (x1, x2) =
(

1
λ

[ψµ ◦ ϕε,j ]1 (λx1, x2) , [ψµ ◦ ϕε,j ]2 (λx1, x2)
)

Let k ∈ N. We compute for a multiindex ~a with 0 ≤ |~a| ≤ k:∥∥∥D~a [φ̃λ,µ]
1

∥∥∥
0,ext

≤ λk−1 · |||ψµ ◦ ϕε,j |||k,ext and
∥∥∥D~a [φ̃λ,µ]

2

∥∥∥
0,ext

≤ λk · |||ψµ ◦ ϕε,j |||k,ext.

Therefore we examine the map ψµ. For any multiindex ~a with 0 ≤ |~a| ≤ k and u ∈ {1, 2}
we obtain:

∥∥D~a [ψµ]u
∥∥

0,ext ≤ µk−1 · |||ϕε2 |||k,ext = Ck,ε2 · µk−1 and in the same way we get∥∥∥D~a [ψ−1
µ

]
u

∥∥∥
0,ext

≤ Ck,ε2 · µk−1. Hence: |||ψµ|||k,ext ≤ C · µk−1.

In the next step we use the formula of Faà di Bruno mentioned in remark 3.2. With it we
compute for any multiindex ~ν with |~ν| = k:∥∥∥D~ν [(ψµ ◦ ϕε,j)−1

]
u

∥∥∥
0,ext

=
∥∥∥D~ν [ϕ−1

ε,j ◦ ψ
−1
µ

]
u

∥∥∥
0,ext

=

∥∥∥∥∥∥∥∥
∑

~λ∈N2
0,1≤|~λ|≤k

D~λ
[
ϕ−1
ε,j

]
u
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
i=1

[
D~liψ

−1
µ

]~ki
~ki! ·

(
~li!
)|~ki|

∥∥∥∥∥∥∥∥
0,ext
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=

∥∥∥∥∥∥∥∥
∑

~λ∈N2
0,1≤|~λ|≤k

D~λ
[
ϕ−1
ε,j

]
u
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
i=1

∏m
t=1

(
D~li

[
ψ−1
µ

]
t

)~kit
~ki! ·

(
~li!
)|~ki|

∥∥∥∥∥∥∥∥
0,ext

≤
∑

~λ∈N2
0,1≤|~λ|≤k

∥∥∥D~λ [ϕ−1
ε,j

]
u

∥∥∥
0,ext
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
i=1

∏m
t=1

∥∥∥D~li [ψ−1
µ

]
t

∥∥∥~kit
0,ext

~ki! ·
(
~li!
)|~ki|

≤
∑

~λ∈N2
0 with 1≤|~λ|≤k

∥∥∥D~λ [ϕ−1
ε,j

]
u

∥∥∥
0,ext
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
i=1

|||ψ−1
µ |||

∑m
t=1

~kit

|~li|,ext

~ki! ·
(
~li!
)|~ki|

=
∑

~λ∈N2
0 with 1≤|~λ|≤k

∥∥∥D~λ [ϕ−1
ε,j

]
u

∥∥∥
0,ext
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
i=1

|||ψ−1
µ |||
|~ki|
|~li|,ext

~ki! ·
(
~li!
)|~ki|

As seen above: |||ψ−1
µ |||
|~ki|
|~li|,ext

≤ C · µ|~ki|·|~li|. Hereby:
∏s
i=1 |||ψ−1

µ |||
|~ki|
|~li|,ext

≤ Ĉ · µ
∑s
i=1|~li|·|~ki|

where Ĉ is independent of µ. By definition of the set ps
(
~ν,~λ

)
we have

∑s
i=1

∣∣∣~ki∣∣∣ ·~li = ~ν. Hence:

k = |~ν| =

∣∣∣∣∣
s∑
i=1

∣∣∣~ki∣∣∣ ·~li
∣∣∣∣∣ =

2∑
t=1

(
s∑
i=1

∣∣∣~ki∣∣∣ ·~li)
t

=
2∑
t=1

s∑
i=1

∣∣∣~ki∣∣∣ ·~lit =
s∑
i=1

∣∣∣~ki∣∣∣ ·( 2∑
t=1

~lit

)
=

s∑
i=1

∣∣∣~ki∣∣∣ · ∣∣∣~li∣∣∣
This shows

∏s
i=1 |||ψ−1

µ |||
|~ki|
|~li|,ext

≤ Ĉ · µk and finally
∥∥∥D~ν [(ψµ ◦ ϕε,j)−1

]
u

∥∥∥
0,ext

≤ C · µk. Anal-

ogously we compute
∥∥D~ν [ψµ ◦ ϕε,j ]u

∥∥
0,ext ≤ C · |||ψµ|||k,ext ≤ C · µk−1. Altogether we obtain

|||ψµ ◦ ϕε,j |||k,ext ≤ C · µk. Hereby we estimate
∥∥∥D~a [φ̃λ,µ]

u

∥∥∥
0,ext

≤ C · λk · µk and analogously∥∥∥D~a [φ̃−1
λ,µ

]
u

∥∥∥
0,ext

≤ C · λk · µk. In conclusion this yields |||φ̃λ,µ|||k,ext ≤ C · µk · λk.
In the setting of our explicit construction of the map φn in section 2.5 we have ε = εn, ε2 = εn

3 ,

λmax = n · q2+3·(n−1)+
(n−1)·(n−2)

2
n and µmax = q3+n−1

n . Thus:

|||φn|||k,ext ≤ C̃ (k, n) ·
(
n · q2+3·(n−1)+

(n−1)·(n−2)
2

n

)k
·
(
q3+n−1
n

)k
≤ C (k, n) · γkn

where C (k, n) is a constant independent of qn.

Combining the last results with the aid of the formula of Faà di Bruno yields

Lemma 3.4. For every k ∈ N we have:∣∣∣∥∥∥D−1
ψn,γn

◦ φn ◦Dψn,γn

∥∥∥∣∣∣
k
≤ C · γ3·k

n

where C is a constant depending on k and n, but is independent of qn.

In the next step we consider the map hn = gn ◦D−1
ψn,γn

◦φn ◦Dψn,γn , where gn is constructed
in section 2.4:
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Lemma 3.5. For every k ∈ N we have:

|‖hn‖|k ≤ C · q
k
n · γ4·k

n

where C is a constant depending on k and n, but is independent of qn.

Proof. We label φ̄n := D−1
ψn,γn

◦ φn ◦Dψn,γn . Outside of S1 × [δ, 1− δ]m−1 we have:

hn (x1, x2) = gn ◦ φ̄n (x1, x2)

=
([
φ̄n (x1, x2)

]
1

+ χn (x2) · [n · qσnn ] ·
[
φ̄n (x1, x2)

]
2
,
[
φ̄n (x1, x2)

]
2

)
and

h−1
n (x1, x2) = φ̄−1

n ◦ g−1
n (x1, x2)

=
([
φ̄−1
n (x1 − χn (x2) · [n · qσnn ] · x2, x2)

]
1
,
[
φ̄n (x1 − χn (x2) · [n · qσnn ] · x2, x2)

]
2

)
Since σn < 1 we can estimate:

|||hn|||k ≤ 2 · Cn,k · [n · qσnn ]k · |||φ̄n|||k ≤ C̄ · qσn·kn · γ3·k
n ≤ C̄ · qkn · γ3·k

n

with a constant C̄ independent of qn.

In the other case we have

gn ◦ φ̄n (x1, x2) =
([
ga,b,ε

([
φ̄n
]
1
,
[
φ̄n
]
2

)]
1

(x1, x2) ,
[
ga,b,ε

([
φ̄n
]
1
,
[
φ̄n
]
2

)]
2

(x1, x2)
)

We will use the formula of Faà di Bruno as above for any multiindex ~ν with |~ν| = k and obtain
for u ∈ {1, 2}:∥∥D~ν [gn ◦ φ̄n]u∥∥0

=
∥∥D~ν [ga,b,ε ◦ φ̄n]u∥∥0

≤
∑

~λ∈N2
0 with 1≤|~λ|≤k

∥∥D~λ [ga,b,ε]u
∥∥

0
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

|||φ̄n|||
|~kj|
|~lj|

~kj ! ·
(
~lj !
)|~kj|

By Lemma 3.4 we have |||φ̄n|||k ≤ C · γ3·k
n , where C is a constant independent of qn. As above

we show
∏s
j=1 |||φ̄n|||

|~kj|
|~lj| ≤ Ĉ · γ

(∑s
j=1|~lj|·|~kj|)·3

n = Ĉ · γk·3n , where Ĉ is a constant independent of
qn.
Furthermore we examine the map ga,b,ε for a, b ∈ Z:

ga,b,ε (x1, x2) =
(

1
a
· [gε]1

(
a · x1,

b · a
ε
· x2

)
,
ε

b · a
[gε]2

(
a · x1,

b · a
ε
· x2

))
g−1
a,b,ε (x1, x2) =

(
1
a
·
[
g−1
ε

]
1

(
a · x1,

b · a
ε
· x2

)
,
ε

b · a
[
g−1
ε

]
2

(
a · x1,

b · a
ε
· x2

))
Thus: |||ga,b,ε|||k ≤

(
b·a
ε

)k−1 · bε · |||gε|||k = Cε,k · bk · ak−1. By our constructions in section 2.4 we
have b = [n · qσnn ] ≤ n · qσnn , a ≤ γn and ε = 16n2 · εn. Hence:

|||gn|||k ≤ Cn,k · qσn·kn · γk−1
n ≤ Cn,k · qkn · γk−1

n .
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Finally we conclude:
∥∥D~ν [gn ◦ φ̄n]u∥∥0

≤ C(n, k) · qkn · γk−1
n · γ3·k

n ≤ C(n, k) · qkn · γ4·k
n .

In the next step we consider the inverse φ̄−1
n ◦ g−1

n :

φ̄−1
n ◦ g−1

a,b,ε (x1, x2) =([
φ̄−1
n

]
1

([
g−1
a,b,ε

]
1

(x1, x2) ,
[
g−1
a,b,ε

]
1

(x1, x2)
)
,
[
φ−1
n

]
2

([
g−1
a,b,ε

]
1

(x1, x2) ,
[
g−1
a,b,ε

]
1

(x1, x2)
))

For u ∈ {1, 2} and any multiindex ~ν with |~ν| = k we obtain using the formula of Faà di Bruno
again:

∥∥D~ν [φ̄−1
n ◦ g−1

n

]
u

∥∥
0
≤

∑
~λ∈N2

0 with 1≤|~λ|≤k

∥∥D~λ [φ̄−1
n

]
u

∥∥
0
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

|||gn|||
|~kj|
|~lj|

~kj ! ·
(
~lj !
)|~kj|

As above we show
∏s
j=1 |||gn|||

|~kj|
|~lj| ≤ Ĉ · q

k
n · γkn, where Ĉ is a constant independent of qn. Since

|||φ̄n|||k ≤ C · γ3·k
n we get∥∥D~ν [φ̄−1

n ◦ g−1
n

]
u

∥∥
0
≤ Č · qkn · γkn · γ3·k

n ≤ Č · qkn · γ4·k
n

where Č is a constant independent of qn.
Thus we obtain finally |||gn ◦ φ̄n|||k ≤ C(n, k) · qkn · γ4·k

n .

Finally we are able to prove an estimate on the norms of the map Hn:

Lemma 3.6. For every k ∈ N we get:

|||Hn|||k ≤ C̆ · qk·4·n·(n+5)
n

where C̆ is a constant depending solely on k, n and Hn−1. Since Hn−1 is independent of qn in
particular, the same is true for C̆.

Proof. By Lemma 3.5 and γn = n · q2+3n+
(n−1)·n

2
n = n · q2+

n·(n+5)
2

n we have

|||hn|||k ≤ C · q
k·(1+4·2+4·n·(n+5)

2 )
n ≤ C · qk·4·n·(n+5)

n

Let k ∈ N, u ∈ {1, 2} and ~ν ∈ N2
0 be a multiindex with |~ν| = k. As above we estimate:

‖D~ν [Hn]u‖0 = ‖D~ν [Hn−1 ◦ hn]u‖0

≤
∑

~λ∈N2
0 with 1≤|~λ|≤k

∥∥D~λ [Hn−1]u
∥∥

0
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

|||hn|||
|~kj|
|~lj|

~kj ! ·
(
~lj !
)|~kj|

and compute using Lemma 3.5:
∏s
j=1 |||hn|||

|~kj|
|~lj| ≤ Ĉ · qk·4·n·(n+5)

n . Since Hn−1 was constructed

independently of qn we conclude: ‖D~ν [Hn]u‖0 ≤ Č · q
k·4·n·(n+5)
n , where Č is a constant indepen-

dent of qn.
In the same way we prove an analogous estimate on

∥∥D~ν [H−1
n

]
u

∥∥
0
and verify the claim.
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3.2 Proof of convergence
In [Kun13a], Lemma 5.8., we proved that under some assumptions on the sequence (αn)n∈N the
sequence (fn)n∈N converges to f ∈ Aα in the Diff∞ (M)-topology.

Lemma 3.7. Let ε > 0 be arbitrary and (kn)n∈N be a strictly increasing sequence of natural
numbers satisfying

∑∞
n=1

1
kn

< ε. For each kn ∈ N there is a constant Ckn ≥ 1 determined by
[Kun13a], Lemma 5.7.. Furthermore we assume that in our constructions the following conditions
are fulfilled:

|α− α1| < ε and |α− αn| ≤ 1

2·kn·Ckn ·|||Hn|||
kn+1
kn+1

for every n ∈ N.

1. Then the sequence of diffeomorphisms fn = Hn ◦Rαn+1 ◦H−1
n converges in the Diff∞(M)-

topology to a measure-preserving smooth diffeomorphism f , for which d∞ (f,Rα) < 3 · ε
holds.

2. Also the sequence of diffeomorphisms f̂n = Hn ◦Rα ◦H−1
n ∈ Aα (M) converges to f in the

Diff∞(M)-topology. Hence f ∈ Aα.

Next we show that we can satisfy the conditions from Lemma 3.7 in our constructions:

Lemma 3.8. Let (kn)n∈N be a strictly increasing seq. of natural numbers with
∑∞
n=1

1
kn

< ∞
and Ckn be the constants from Lemma 3.7. For any Liouvillean number α there exists a sequence
αn = pn

qn
of rational numbers with 1

εn
divides qn and qn > maxi=1,...,n+1 Li (where Li denotes

the Lipschitz constant of ρi ∈ Ξ), such that our conjugation maps Hn constructed in section 2
fulfil the following conditions:

1. For every n ∈ N:

|α− αn| <
1

2 · kn · Ckn · |||Hn|||kn+1
kn+1

2. For every n ∈ N:

|α− αn| <
1

2n+1 · qn · |||Hn|||1

Proof. In Lemma 3.6 we deduced the estimate |||Hn|||kn+1 ≤ C̆n · q(kn+1)·4·n·(n+5)
n , where the

constant C̆n was independent of qn. Thus we can choose qn ≥ C̆n for every n ∈ N. Hence we ob-
tain: |||Hn|||kn+1 ≤ q8·n·(n+5)·(kn+1)

n . Besides qn ≥ C̆n we set the conditions qn > n13 ·q9·r(n−1)+1
n−1

and qn ≥ 1
εn
· 12 · 1

εn−1
· |‖ψn−1‖|1 · q

2·(2+3·(n−1)+
(n−1)·(n−2)

2 )
n−1 . Furthermore we can demand

qn > maxi=1,...,n+1 Li. Since α is a Liouvillean number we find a sequence of rational numbers
α̃n = p̃n

q̃n
, p̃n, q̃n relatively prime, converging to α under the above restrictions (formulated for

q̃n) satisfying:

|α− α̃n| =
∣∣∣∣α− p̃n

q̃n

∣∣∣∣ < |α− αn−1| · ε1+8·n·(n+5)·(kn+1)2

n

2n+1 · kn · Ckn · q̃
1+8·n·(n+5)·(kn+1)2

n

Put qn := q̃n
εn

and pn := p̃n
εn

. Then we obtain:

|α− αn| <
|α− αn−1|

2n+1 · kn · Ckn · q
1+8·n·(n+5)·(kn+1)2

n

.
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Thus we have |α− αn|
n→∞→ 0 monotonically. Because of |||Hn|||kn+1

kn+1 ≤ q
8·n·(n+5)·(kn+1)2

n this
yields: |α− αn| < 1

2n+1·qn·kn·Ckn ·|||Hn|||
kn+1
kn+1

. Thus the first property of this Lemma is fulfilled.

Furthermore we note kn ≥ 1 and Ckn ≥ 1 by the assumption in Lemma 3.7. Thus qn·kn·Ckn ≥ qn.
Moreover |||Hn|||1 ≥ ‖Hn‖0 = 1, becauseHn : S1×[0, 1]m−1 → S1×[0, 1]m−1 is a diffeomorphism.
Altogether we conclude 2n+1 · qn · kn · Ckn · |||Hn|||kn+1

kn+1 ≥ 2n+1 · qn · |||Hn|||1 and so:

(1) |α− αn| <
1

2n+1 · qn · kn · Ckn · |||Hn|||kn+1
kn+1

≤ 1
2n+1 · qn · |||Hn|||1

.

i.e. we verified the second property.

Remark 3.9. Lemma 3.8 shows that the conditions of Lemma 3.7 are satisfied. Therefore our
sequence of constructed diffeomorphisms fn converges in the Diff∞(M)-topology to a diffeomor-
phism f ∈ Aα(M).

Remark 3.10. In particular |‖Hn‖|1 ≤ q
8·n·(n+5)
n motivates our definition of the number r(n) =

8 · n · (n+ 5).

As in [Kun13a], Lemma 5.11., we can conclude:

Lemma 3.11. Let (αn)n∈N be constructed as in Lemma 3.8. Then it holds for every n ∈ N and
for every m̃ ≤ qn+1:

d0

(
f m̃, f m̃n

)
≤ 1

2n

Remark 3.12. We determine the parameter σn ∈ (0, 1) in such a way that qσnn = q
4·r(n−1)
n−1 , i.e.

we have [nqσnn ] = n · q4·r(n−1)
n−1 .

4 The invariant measures

As above µ is the Lebesgue measure on S1× [0, 1] and δ0 (resp. δ1) denotes the Lebesgue measure
on the boundary component S1 × {0} (resp. S1 × {1}). We aim for showing that these are the
only ergodic f -invariant measures. Therefore we deduce a statement on the Birkhoff sums for
arbitrary x ∈ S1 × [0, 1] (see Lemma 4.3). In order to prove such a statement we have to gain
control over a large proportion of every Rt-orbit. This is done with the aid of the trapping maps
and regions.
Furthermore λ̃ denotes the Lebesgue measure on S1 and λ the Lebesgue measure on [0, 1].

4.1 Trapping property

In case of 0 ≤ l ≤ qn − 1, 0 ≤ k ≤ n− 1, j(1)
i ∈ Z,

⌈
18n2εn · qn

⌉
≤ j

(1)
i ≤ qn −

⌈
18n2εn · qn

⌉
− 1

for i = 1, 2 as well as j(t)
2 ∈ Z, 0 ≤ j(t)

2 ≤ qn − 1 for t = 2, 3 we introduce the sets

∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

=

[
l

qn
+

k

n · qn
+

j
(1)
1

n · q2
n

,
l

qn
+

k

n · qn
+
j

(1)
1 + 1
n · q2

n

]
×

[
j

(1)
2

qn
+
j

(2)
2

q2
n

+
j

(3)
2

q3
n

,
j

(1)
2

qn
+
j

(2)
2

q2
n

+
j

(3)
2 + 1
q3
n

]
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Note that there are qn · n ·
(
qn − 2 ·

⌈
18n2εn · qn

⌉)2 · q2
n such sets ∆

l,k,j
(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

. We denote

the union of these sets by T int
n and the collection of these sets by T̃ int

n . Then

µ
(
S1 × [0, 1] \ T int

n

)
= 1−n · qn ·

(
qn − 2 ·

⌈
18n2εn · qn

⌉)2 · q2
n ·

1
n · q5

n

≤ 1−
(

1− 2 · 1
4n4

)2

≤ 1
n4
.

Note that D−1
ψn,γn

(
∆
l,k,j

(1)
1 ,...,j

(3)
2

)
⊆ S1 ×

[
12n2 · εn, 1− 12n2 · εn

]
. Unfortunately gn = g̃[nqσnn ]

is not necessarily true on D−1
ψn,γn

(
∆
l,k,j

(1)
1 ,...,j

(3)
2

)
, but this set is strictly contained in a cube of

sidelength 1
n·q2

n
+ 4n2 · εn ≤ 8n2 · εn that is an union of domains of ga,b.ε. Then we obtain

diam
(
Hn−1 ◦ gn

(
D−1
ψn,γn

(
∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

)))
≤ ‖DHn−1‖0 · n · q

σn
n ·
√

2 · 8n2 · εn

≤ qr(n−1)
n−1 · q4·r(n−1)

n−1 · 8n3 ·
√

2

4 · n11 · q5·r(n−1)+1
n−1

<
4

n8 · qn−1

by the construction of the number σn in Remark 3.12.
By the requirements on the number qn in Lemma 3.8 we obtain∣∣∣ρi (Hn−1 ◦ gn ◦D−1

ψn,γn
(x)
)
− ρi

(
Hn−1 ◦ gn ◦D−1

ψn,γn
(y)
)∣∣∣

≤Lip (ρi) · diam
(
Hn−1 ◦ gn

(
D−1
ψn,γn

(
∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

)))
≤qn−1 ·

4
n8 · qn−1

=
4
n8

for every x, y ∈ ∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

and the function ρi ∈ Ξ in case of i = 1, ..., n.

Remark 4.1. Since we need this expression to converge to 0 as n→∞ this explains our choice
of εn.

Averaging over all y ∈ ∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

we obtain:
(2)∣∣∣∣∣∣ρi
(
Hn−1 ◦ gn ◦D−1

ψn,γn
(x)
)
− 1

µ
(

∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

) ∫
Hn−1◦gn

(
∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

) ρidµ
∣∣∣∣∣∣ < 4

n8

Furthermore we calculate that the trapping region D−1
ψn,γn

(
Sint
l,k,j

(1)
1 , ~j2

)
defined in section 2.2 is

mapped under φn ◦Dψn,γn onto
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⋃[
l

qn
+

k

n · qn
+

j
(1)
1

n · q2
n

+
t
(1)
1

n · q3
n

+ ...+
t
(3·k+

k·(k−1)
2 )

1 + 1

n · q2+3+4+...+(3+k−1)
n

− t
(1)
2

n · q2+3+4+...+(3+k−1)+1
n

− ...

− t
(3+k)
2 + 1

n · q2+3+4+...+(3+k−1)+3+k
n

+
t
(3·k+

k·(k−1)
2 +1)

1

n · q2+3+...+(3+k−1)+(3+k)+1
n

+ ...+
t
(3·(n−1)+

n·(n−1)
2 −k)

1

γn
+

1
n4 · γn

,

l

qn
+

k

n · qn
+ ...+

t
(3·(n−1)+

n·(n−1)
2 −k)

1 + 1
γn

− 1
n4 · γn

]

×

[
j

(1)
2

qn
+ ...+

j
(3+k)
2

q3+k
n

+
εn

q3+k
n

,
j

(1)
2

qn
+ ...+

j
(3+k)
2 + 1
q3+k
n

− εn

q3+k
n

]

where the union is taken over all t(l)2 ∈ Z, 0 ≤ t(l)2 ≤ qn− 1, for l = 2, ..., 3 + k as well as t(1)
2 ∈ Z,⌈(

4n2 + 1
)
εn · qn

⌉
≤ t(1)

2 ≤ qn −
⌈(

4n2 + 1
)
εn · qn

⌉
− 1 as well as t(j)1 ∈ Z, 0 ≤ t(j)1 ≤ qn − 1, for

j = 1, ..., 3·(n−1)+ n·(n−1)
2 −k apart from t

(3·k+
k·(k−1)

2 +1)
1 satisfying dεn · qne ≤ t

(3·k+
k·(k−1)

2 +1)
1 ≤

qn − dεn · qne − 1.

In particular φn ◦ Dψn,γn

(
D−1
ψn,γn

(
Sint
l,k,j

(1)
1 , ~j2

))
is contained in ∆

l,k,j
(1)
1 j

(1)
2 ,j

(2)
2 ,j

(3)
2

. The same

is true for the other allowed values of j(4)
2 , ..., j

(3+k)
2 . Thus there are qkn trapping regions, that

are mapped into ∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

under φn ◦ Dψn,γn . Hence we can estimate the number of
i ∈ {0, ..., qn+1 − 1} such that φn ◦ Dψn,γn ◦ Riαn+1

(x) is contained in ∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

by

qkn ·$n
int(x) · qn+1 ·

1− 12
n2

n·q3+k
n ·q2

n

= $n
int(x) · qn+1 ·

(
1− 12

n2

)
· µ
(

∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

)
from below and

by $n
int(x) · qn+1 · µ

(
∆
l,k,j

(1)
1 ,j

(1)
2 ,j

(2)
2 ,j

(3)
2

)
from above for arbitrary x ∈ S1 × [0, 1] using Remark

2.3.
Let x ∈ S1 × [0, 1] be arbitrary. We denote the set of iterates j ∈ {0, ..., qn+1 − 1} such that
φn ◦Dψn,γn ◦Rjαn+1

(x) is contained in ∆ ∈ T̃ int
n by I∆. With the aid of equation 2 we obtain:∣∣∣∣∣∣ 1

qn+1

∑
j∈I∆

ρi

(
Hn−1 ◦ gn ◦D−1

ψn,γn
◦ φn ◦Dψn,γn ◦Rjαn+1

(x)
)
−$n

int(x) ·
∫
Hn−1◦gn(∆)

ρidµ

∣∣∣∣∣∣
≤4 · µ (∆)

n8
+

12
n2
·
∫
Hn−1◦gn(∆)

|ρi| dµ

Furthermore, we examine the trapping regions in the neighbourhoods of the boundaries. For
l = 0, 1, ..., qn−1, k = 0, 1, ..., n−1 and

⌈
18n2εn · qn

⌉
≤ j(1)

1 ≤ qn−
⌈
18n2εn · qn

⌉
−1 we introduce

the sets

∆0

l,k,j
(1)
1

=

[
l

qn
+

k

n · qn
+

j
(1)
1

n · q2
n

,
l

qn
+

k

n · qn
+
j

(1)
1 + 1
n · q2

n

]
×
[
0, 4 · n2 · εn

]
and

∆1

l,k,j
(1)
1

=

[
l

qn
+

k

n · qn
+

j
(1)
1

n · q2
n

,
l

qn
+

k

n · qn
+
j

(1)
1 + 1
n · q2

n

]
×
[
1− 8 · n2 · εn, 1

]
.
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Again T̃ tn denotes the collection of these sets ∆t

l,k,j
(1)
1

in case of t = 0, 1 as well as I∆0 and I∆1

respectively label the set of iterates such that Dψn,γn ◦ Rjαn+1
(x) is contained in ∆t ∈ T̃ tn for

t = 0 and accordingly t = 1.
We observe that for t = 0, 1 the map Hn−1 ◦ gn acts as the identity on these sets ∆t

l,k,j
(1)
1

and

diam
(

∆t

l,k,j
(1)
1

)
≤ 16 · n2 · εn. Then we conclude for i = 1, ..., n and x, y ∈ ∆t

l,k,j
(1)
1

(3) |ρi (Hn−1 ◦ gn (x))− ρi (Hn−1 ◦ gn (y))| < Lip (ρi) · diam
(

∆t

l,k,j
(1)
1

)
<

4

n9 · q5·r(n−1)
n−1

<
1
n8

In particular this holds true for y =
(

l
qn

+ k
n·qn + j

(1)
1
n·q2

n
, t

)
. We consider such points

(
u

n·q2
n
, t
)

for u = 0, ..., nq2
n − 1 and calculate for z ∈

[
u

n·q2
n
− 1

2·n·q2
n
, u
n·q2

n
+ 1

2·n·q2
n

]
:∣∣∣∣ρi(( u

n · q2
n

, t

))
− ρi ((z, t))

∣∣∣∣ < Lip (ρi) ·
1

2 · n · q2
n

<
1

n · qn

Averaging over all z ∈
[

u
n·q2

n
− 1

2·n·q2
n
, u
n·q2

n
+ 1

2·n·q2
n

]
yields∣∣∣∣∣∣ 1

n · q2
n

· ρi
(

u

n · q2
n

, t

)
−
∫[

u
n·q2n

− 1
2·n·q2n

, u
n·q2n

+ 1
2·n·q2n

] ρi dδt
∣∣∣∣∣∣ < 1

n · qn
· 1
n · q2

n

Summing over all u = 0, ..., nq2
n − 1 gives∣∣∣∣∣∣ 1

n · q2
n

·
nq2
n−1∑
u=0

ρi

(
u

n · q2
n

, t

)
−
∫

S1
ρi dδ

t

∣∣∣∣∣∣ < 1
n · qn

The set of u ∈
{

0, ..., nq2
n − 1

}
such that

(
u

n·q2
n
, t
)
is contained in one of the blocks ∆t

l,k,j
(1)
1
∈ T̃ tn

is denoted by U tn. Since there are at least qn · n ·
(
qn − 2 ·

⌈
18n2εn · qn

⌉)
≥
(
1− 1

n4

)
· n · q2

n such
blocks there are at most

⌈
1
n4 · n · q2

n

⌉
numbers u ∈

{
0, ..., nq2

n − 1
}
outside of U tn. Hereby we get∣∣∣∣∣∣ 1

qn+1

∑
∆t∈T̃ tn

∑
j∈I∆t

ρi

(
Hn ◦Rjαn+1

(x)
)
−$n

t (x) ·
∫

S1
ρi (θ, t) dδt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
qn+1

∑
∆t∈T̃ tn

∑
j∈I∆t

ρi

(
Hn ◦Rjαn+1

(x)
)
−$n

t (x) · 1
n · q2

n

·
nq2
n−1∑
u=0

ρi

(
u

n · q2
n

, t

)∣∣∣∣∣∣
+$n

t (x) ·

∣∣∣∣∣∣ 1
n · q2

n

·
nq2
n−1∑
u=0

ρi

(
u

n · q2
n

, t

)
−
∫

S1
ρi dδ

t

∣∣∣∣∣∣
≤
∑
u∈Utn

∣∣∣∣∣∣ 1
qn+1

∑
j∈I∆tu

ρi

(
Hn ◦Rjαn+1

(x)
)
− $n

t (x)
n · q2

n

· ρi
(

u

n · q2
n

, t

)∣∣∣∣∣∣+
1
n2
· ‖ρi‖0 +

1
n · qn
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Under the mapHn

(
qn − 2 ·

⌈
18n2εn · qn

⌉)
·q2+k
n trapping regionsD−1

ψn,γn

(
St
l,k,j

(1)
1 , ~j2

)
are mapped

into one such ∆t

l,k,j
(1)
1

. Thus for arbitrary x ∈ S1 × [0, 1] the set ∆t

l,k,j
(1)
1

captures at least

$n
t (x)·qn+1 ·

(
1− 14

n2

)
· 1
n·q2

n
and at most $n

t (x)·qn+1 · 1
n·q2

n
iterates D−1

ψn,γn
◦φn◦Dψn,γn ◦Rjαn+1

(x)
by Remark 2.3. Then we can estimate with the aid of equation 3∣∣∣∣∣∣ 1

qn+1

∑
j∈I∆tu

ρi

(
Hn ◦Rjαn+1

(x)
)
− $n

t (x)
n · q2

n

ρi

(
u

n · q2
n

, t

)∣∣∣∣∣∣ < $n
t (x)
n · q2

n

· 1
n8

+
14
n2
· $

n
t (x)
n · q2

n

· ‖ρi‖0

In continuation of the above estimate we conclude∣∣∣∣∣∣ 1
qn+1

∑
∆t∈T̃ tn

∑
j∈I∆t

ρi

(
Hn ◦Rjαn+1

(x)
)
−$n

t (x) ·
∫

S1
ρi (θ, t) dδt

∣∣∣∣∣∣
≤ 1
n8

+
14
n2
· ‖ρi‖0 +

1
n2
· ‖ρi‖0 +

1
n · qn

≤ 15
n2
· ‖ρi‖0 +

2
n8

Using this preparatory work we can prove the following result on the Birkhoff sums:

Lemma 4.2. Let ρi ∈ Ξ and i = 1, ..., n. Then for every y ∈M = S1 × [0, 1] we have

inf
ξn∈Θ

∣∣∣∣∣∣ 1
qn+1

qn+1−1∑
j=0

ρi
(
f jn (y)

)
−
∫
M

ρi dξ
n

∣∣∣∣∣∣ < 60
n2
· ‖ρi‖0

where Θ is the simplex generated by
{
µ, δ0, δ1

}
.

Proof. Let x ∈ S1 × [0, 1] be arbitrary. We introduce the measure

ξnx := $n
int(x) · µ+$n

0 (x) · δ0 +$n
1 (x) · δ1 ∈ Θ.

The set of numbers k ∈ {0, 1, ..., qn+1 − 1} such that the iterates Rkαn+1
(x) are not contained in

one of the trapping regions is denoted by Ia. Referred to Remark 2.4 there are at most 14
n2 · qn+1

numbers in Ia. We obtain
∣∣∣∑j∈Ia ρi

(
Hn ◦Rjαn+1

(x)
)∣∣∣ ≤ ‖ρi‖0 · 14

n2 · qn+1.
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Hereby we obtain:∣∣∣∣∣∣ 1
qn+1

qn+1−1∑
j=0

ρi

(
Hn ◦Rjαn+1

(x)
)
−$n

int(x) ·
∫
M

ρi dµ−$n
0 (x) ·

∫
S1
ρi dδ

0 −$n
1 (x) ·

∫
S1
ρi dδ

1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
qn+1

∑
∆int∈T̃ int

n

∑
j∈I∆int

ρi

(
Hn ◦Rjαn+1

(x)
)
−$n

int(x) ·
∫
M

ρi dµ

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
qn+1

∑
∆0∈T̃ 0

n

∑
j∈I∆0

ρi

(
Hn ◦Rjαn+1

(x)
)
−$n

0 (x) ·
∫

S1
ρi (θ, 0) dδ0

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
qn+1

∑
∆1∈T̃ 1

n

∑
j∈I∆1

ρi

(
Hn ◦Rjαn+1

(x)
)
−$n

1 (x) ·
∫

S1
ρi (θ, 1) dδ1

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
qn+1

∑
j∈Ia

ρi

(
Hn ◦Rjαn+1

(x)
)∣∣∣∣∣∣

≤ 4
n8

+
12
n2
· ‖ρi‖0 + µ

(
M \ T int

n

)
· ‖ρi‖0 + 2 ·

(
15
n2
· ‖ρi‖0 +

2
n8

)
+

14
n2
· ‖ρi‖0 ≤

60
n2
· ‖ρi‖0

With x = H−1
n (y) we obtain the statement of the Lemma.

We point out that the measure ξnx used in the above proof was dependent on the point x, but
independent of the function ρ ∈ Ξ.

Lemma 4.3. For every ρ ∈ Ξ and y ∈ S1 × [0, 1] we have

inf
ξn∈Θ

∣∣∣∣∣ 1
qn+1

qn+1−1∑
k=0

ρ
(
fk (y)

)
−
∫
ρ dξn

∣∣∣∣∣→ 0 as n→∞

where Θ is the simplex generated by
{
µ, δ0, δ1

}
.

Proof. By Lemma 3.11 we have

d
(qn+1)
0 (f, fn) := max

i=0,1,...,qn+1−1
d0

(
f i, f in

) n→∞→ 0

Then for every ρ ∈ Ξ we have
∣∣ρ (f i (x)

)
− ρ

(
f in (x)

)∣∣ n→∞→ 0 uniformly for i = 0, 1, ..., qn+1 − 1,
because every continuous function on the compact space S1×[0, 1] is uniformly continuous . Thus
we get:

∥∥∥ 1
qn+1

∑qn+1−1
i=0 ρ

(
f i (x)

)
− 1

qn+1

∑qn+1−1
i=0 ρ

(
f in (x)

)∥∥∥
0

n→∞→ 0. Applying the previous
Lemma 4.2 we obtain the claim.

Since the family Ξ is dense in C
(
S1 × [0, 1] ,R

)
the convergence holds for every continuous

function by an approximation argument.
Now we can prove that the measures µ, δ0, δ1 are the only possible ergodic ones: Assume that
there is another ergodic invariant probability measure ξ. By the Birkhoff Ergodic Theorem we
have for every ρ ∈ C

(
S1 × [0, 1] ,R

)
:

lim
n→∞

1
n

n−1∑
k=0

ρ
(
fk (x)

)
=
∫

S1×[0,1]

ρ dξ for ξ-a.e. x ∈ S1 × [0, 1]
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With the aid of Lemma 4.3 we obtain for every ρ ∈ C
(
S1 × [0, 1] ,R

)
and x in a set of ξ-full

measure:∫
S1×[0,1]

ρ dξ = lim
n→∞

1
n

n−1∑
k=0

ρ
(
fk (x)

)
= lim
n→∞

1
qn+1

qn+1−1∑
k=0

ρ
(
fk (x)

)
= lim
n→∞

∫
S1×[0,1]

ρ dξn,

where ξn is in the simplex generated by
{
µ, δ0, δ1

}
. As noted this measure does not depend on the

function ρ. Thus we have for every ρ ∈ C
(
S1 × [0, 1] ,R

)
: limn→∞

∫
S1×[0,1]

ρ dξn =
∫

S1×[0,1]
ρ dξ.

Since the simplex generated by
{
µ, δ0, δ1

}
is weakly closed this implies that ξ is in this simplex.

We recall that ergodic measures are the extreme points in the set of invariant Borel probability
measures (see [Wa75], Theorem 5.15.). Then ξ has to be one of the measures

{
µ, δ0, δ1

}
and we

obtain a contradiction.

4.2 Weak mixing with respect to Lebesgue measure on S1 × [0, 1]

We introduce the central notion in the proof of the weak mixing-property:

Definition 4.4. Let Φ : S1 × [0, 1] → S1 × [0, 1] be a diffeomorphism and J be an interval in
[0, 1]. We say that an element Î of a partial partition is (γ, ε)-distributed on J under Φ, if the
following properties are satisfied:

• [c, c+ γ̃]× J ⊆ Φ
(
Î
)
⊆ [c, c+ γ̃]× [0, 1] for some c ∈ S1 and γ̃ ≤ γ

• For every interval J̃ ⊆ J it holds:∣∣∣∣∣∣
µ
(
Î ∩ Φ−1

(
S1 × J̃

))
µ
(
Î
) −

λ
(
J̃
)

λ (J)

∣∣∣∣∣∣ ≤ ε ·
λ
(
J̃
)

λ (J)

Remark 4.5. Analogous to [FS05] we will call the second property “almost uniform distribution”
of Î on J . In the following we will often write it in the form∣∣∣µ(Î ∩ Φ−1

(
S1 × J̃

))
· λ (J)− µ

(
Î
)
· λ
(
J̃
)∣∣∣ ≤ ε · µ(Î) · λ(J̃)

In the next step we define the sequence of natural numbers (mn)n∈N:

mn = min
{
m ≤ qn+1 : m ∈ N, inf

k∈Z

∣∣∣∣m · pn+1

qn+1
− 1
n · qn

+
k

qn

∣∣∣∣ ≤ 1
εn+1 · qn+1

}
= min

{
m ≤ qn+1 : m ∈ N, inf

k∈Z

∣∣∣∣m · qn · pn+1

qn+1
− 1
n

+ k

∣∣∣∣ ≤ qn
εn+1 · qn+1

}
Lemma 4.6. The set Mn :=

{
m ≤ qn+1 : m ∈ N, infk∈Z

∣∣∣m · qn·pn+1
qn+1

− 1
n + k

∣∣∣ ≤ qn
εn+1·qn+1

}
is non-empty for every n ∈ N, i.e. mn exists.

Proof. In Lemma 3.8 we constructed the sequence αn = pn
qn

in such a way that qn = 1
εn
· q̃n

and pn = 1
εn
· p̃n with p̃n, q̃n relatively prime. Therefore the set

{
j · qn·pn+1

qn+1
: j = 1, 2, ..., qn+1

}
contains εn+1·qn+1

gcd(qn,q̃n+1) different equally distributed points on S1. Hence there are at least εn+1·qn+1
qn

different such points and so for every x ∈ S1 there is a j ∈ {1, ..., qn+1}, such that

inf
k∈Z

∣∣∣∣x− j · qn · pn+1

qn+1
+ k

∣∣∣∣ ≤ qn
εn+1 · qn+1

.

In particular this is true for x = 1
n .
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Remark 4.7. We define

an =
(
mn ·

pn+1

qn+1
− 1
n · qn

)
mod

1
qn

By the above construction of mn it holds: |an| ≤ 1
εn+1·qn+1

. In the proof of Lemma 3.8 we set
the condition qn+1 ≥ 1

εn+1
· 12 · 1

εn
· |‖ψn‖|1 · γ2

n. Thus we get:

|an| ≤
εn

12 · |‖ψn‖|1 · γ2
n

Our constructions are done in such a way that the following property is satisfied:

Lemma 4.8. We consider the interval J :=
[
25n2 · εn, 1− 25n2 · εn

]
as well as the diffeomor-

phism Φn := D−1
ψn,γn

◦φn ◦Dψn,γn ◦Rmnαn+1
◦D−1

ψn,γn
◦φ−1

n with the conjugating map φn defined in

section 2.5. Then the elements of the partition ηn are
(

1
n·q2

n
, 1
n

)
-distributed on J under Φn.

In order to prove the weak mixing property we modify the proof from [Kun13b], section 5.
We recall the following approximation statement ([Kun13b], Lemma 5.2):

Lemma 4.9. Let f = limn→∞ fn be a diffeomorphism obtained by the constructions in the
preceding sections and (mn)n∈N be a sequence of natural numbers fulfilling d0 (fmn , fmnn ) < 1

2n .
Furthermore let (νn)n∈N be a sequence of partial partitions, where νn → ε and for every n ∈ N νn
is the image of a partial partition ηn under a measure-preserving diffeomorphism Fn, satisfying
the following property: For every cube A ⊆ S1× (0, 1) and for every ε ∈ (0, 1] there exists N ∈ N
such that for every n ≥ N we have for every Γn ∈ νn

(4)
∣∣µ (Γn ∩ f−mnn (A)

)
− µ (Γn) · µ (A)

∣∣ ≤ ε · µ (Γn) · µ (A)

Then f is weak mixing.

In our case we will use the subsequent sequence of partial partitions and we will need that it
converges to the decomposition into points.

Lemma 4.10. Consider the sequence of partial partitions (ηn)n∈N constructed in section 2.3.1.
Furthermore, let (Hn)n∈N be a sequence of measure-preserving smooth diffeomorphisms satisfying
‖DHn−1‖ ≤ ln(qn)

n for every n ∈ N and define the partial partitions

νn =
{

Γn = Hn−1 ◦ gn ◦D−1
ψn,γn

(
În

)
: În ∈ ηn

}
Then we get νn → ε.

Proof. Since the trapping map D−1
ψn,γn

causes a r-translation by at most 4n2 · εn we have

D−1
ψn,γn

(
În

)
⊆ S1 ×

[
12n2 · εn, 1− 12n2 · εn

]
due to the choice of j(1)

2 .

After the application of D−1
ψn,γn

on În ∈ ηn the diameter is at most
√

2 ·
(

1
q5
n

+ 4n2 · εn
)
≤

2 ·
√

2 · 4n2εn. Unfortunately, on this set gn = g̃[nqσnn ] is not necessarily true, but it is strictly
contained in such a cube of sidelength 2 ·

√
2 ·4n2εn that is a union of domains of ga,b,ε. Under the

above assumption qn > n13 · q9·r(n−1)+1
n−1 we obtain for the diameter of such a partition element:

diam
(
Hn−1 ◦ gn ◦D−1

ψn,γn

(
În

))
≤ ‖DHn−1‖0 · [nq

σn
n ] · 2 ·

√
2 · 4n2 · εn

≤ qr(n−1)
n−1 · n · q4·r(n−1)

n−1 · 2 ·
√

2

n9 · q5·r(n−1)+1
n−1

→ 0
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as n→∞. Thus this sequence of partial partitions converges to the decomposition into points.

As a technical result needed in the proof of Lemma 4.12 we state [Kun13b], Lemma 5.4.:

Lemma 4.11. Given an interval on the r-axis of the form K =
⋃
k∈Z,k1≤k≤k2

[
k·ε
b·a ,

(k+1)·ε
b·a

]
,

where k1, k2 ∈ Z with b·a
ε · δ ≤ k1 < k2 ≤ b·a

ε −
b·a
ε · δ − 1. Kc,γ denotes the cuboid [c, c+ γ]×K

for some γ > 0. We consider the diffeomorphism ga,b,ε constructed in subsection 2.4 and an
interval L = [l1, l2] of S1 satisfying λ̃ (L) ≥ 4 · 1−2ε

a − γ.
If b · λ(K) > 2. then for the set Q := π~r

(
Kc,γ ∩ g−1

a,b,ε (L×K × Z)
)
we have:

∣∣∣λ (Q)− λ (K) · λ̃ (L)
∣∣∣ ≤ 2

b
· λ̃ (L) +

2 · γ
b

+ γ · λ (K) + 4 · 1− 2ε
a
· λ(K) + 8 · 1− 2ε

b · a

Lemma 4.12. Let n ≥ 5. For the number mn as above we consider

Φn = D−1
ψn,γn

◦ φn ◦Dψn,γn ◦Rmnαn+1
◦D−1

ψn,γn
◦ φ−1

n

and J :=
[
25n2 · εn, 1− 25n2 · εn

]
.

Then for every cube S of side length q−σnn lying in S1 × J we get

(5)
∣∣∣µ(Î ∩ Φ−1

n ◦ g−1
n (S)

)
· λ (J)− µ

(
Î
)
· µ (S)

∣∣∣ ≤ 21
n
· µ
(
Î
)
· µ (S)

Proof. Let S be a cube with sidelength q−σnn lying in S1×J . Furthermore we denote Sθ = πθ (S)
and Sr = πr (S). Obviously: λ̃ (Sθ) = λ (Sr) = q−σnn and λ̃ (Sθ) · λ (Sr) = µ (S) = q−2σn

n .
According to Lemma 4.8 Φn

(
1

n·q2
n
, 1
n

)
-distributes the partition element În ∈ ηn on J , in par-

ticular Φn
(
În

)
⊆ [c, c+ γ] × [0, 1] for some c ∈ S1 and some γ ≤ 1

n·q2
n
. Furthermore we saw in

the proof of Lemma 4.8 that φn ◦Dψn,γn ◦Rmnαn+1
◦D−1

ψn,γn
◦φ−1

n

(
În

)
is contained in the interior

of the step-by-step domains of the map gn and on its boundary gn = g̃[nqσnn ] holds. Particularly
it follows γ ≥ 1−2ε

a in case of gn = ga,b,ε. For l ∈ Z, 0 ≤ l ≤ b·a
ε − 1 we introduce the sets

∆l =
[
lε
ba ,

(l+1)ε
ba

]
and with these we consider

S̃r :=
⋃

∆l⊆Sr

∆l as well as S̃ := Sθ × S̃r ⊆ S

Using the triangle inequality we obtain∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S)

))
· λ (J)− µ

(
Î
)
· µ (S)

∣∣∣ ≤ ∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S)

))
− µ

(
Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))∣∣∣ · λ (J)

+
∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))

· λ (J)− µ
(
Î
)
µ
(
S̃
)∣∣∣+ µ

(
Î
)
·
∣∣∣µ(S̃)− µ (S)

∣∣∣
Here

∣∣∣µ(S̃)− µ (S)
∣∣∣ = µ

(
S \ S̃

)
≤ 2 · εb·a · λ̃ (Sθ) ≤ 2 · εa ·µ (S), where we used b = [n · qσnn ] ≥ qσnn

in case of n > 4. Since Φn and gn are measure-preserving we obtain additionally:∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S)

))
− µ

(
Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))∣∣∣ ≤ µ(S \ S̃) ≤ 2 · ε

a
· µ (S)
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In the proof of Lemma 4.8 we observed µ
(

Φn
(
Î
))
≥ 1

a ·
(
1− 2

26n4

)
· λ (J). Hence:∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S)

))
− µ

(
Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))∣∣∣ · λ (J) ≤ 2 · ε

a
· µ (S) · λ (J)

≤ 2 · ε

1− 2
26n4

· µ (S) · µ
(

Φn
(
Î
))
≤ 4 · ε · µ (S) · µ

(
Φn
(
Î
))

= 4 · ε · µ (S) · µ
(
Î
)

Thus we obtain:∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S)

))
· λ (J)− µ

(
Î
)
· µ (S)

∣∣∣
≤
∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))

· λ (J)− µ
(
Î
)
µ
(
S̃
)∣∣∣+ 5 · ε · µ (S) · µ

(
Î
)(6)

Next, we want to estimate the first summand. By construction of the map gn = ga,b,ε and the
definition of S̃ it holds: Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ [c, c+ γ] × S̃r =: Kc,γ . Considering the proof of

Lemma 4.8 again, we obtain gn (Kc,γ) = g̃[nqσnn ] (Kc,γ) (since c and c+γ are in the domain where
gn = g̃[nqσnn ] holds).
Because of Lemma 4.8: 2γ ≤ 2

n·q2
n
< q−σnn for n > 2. So we can define a cuboid S1 ⊆ S̃, where

S1 := [s1 + γ, s2 − γ]× S̃r using the notation Sθ = [s1, s2]. We examine the two sets

Q := πr

(
Kc,γ ∩ g−1

n

(
Sθ × S̃r

))
Q1 := πr

(
Kc,γ ∩ g−1

n

(
[s1 + γ, s2 − γ]× S̃r

))
As seen above Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ Kc,γ . Hence Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ Φn

(
Î
)
∩ g−1

n

(
S̃
)
∩Kc,γ ,

which implies Φn
(
Î
)
∩ g−1

n

(
S̃
)
⊆ Φn

(
Î
)
∩
(
S1 ×Q

)
.

Claim: On the other hand: Φn
(
Î
)
∩
(
S1 ×Q1

)
⊆ Φn

(
Î
)
∩ g−1

n

(
S̃
)
.

Proof of the claim: For (θ, r) ∈ Φn
(
Î
)
∩
(
S1 ×Q1

)
arbitrary it holds (θ, r) ∈ Φn

(
Î
)
,

i.e. θ ∈ [c, c+ γ], and r ∈ πr

(
Kc,γ ∩ g−1

n

(
[s1 + γ, s2 − γ]× S̃r

))
, i.e. in particular r ∈ S̃r.

This implies the existence of θ̄ ∈ [c, c+ γ] satisfying
(
θ̄, r
)
∈ Kc,γ ∩ g−1

n (S1). Hence there are
β ∈ [s1 + γ, s2 − γ] and r1 ∈ S̃r, such that gn

(
θ̄, r
)

= (β, r1). Because of θ̄ ∈ [c, c+ γ] and
r ∈ S̃r the point

(
θ̄, r
)
is contained in one cuboid of the form ∆a,b,ε. Since θ ∈ [c, c+ γ] (θ, r) is

contained in the same ∆a,b,ε. Thus πr (gn (θ, r)) ∈ S̃r. Furthermore gn (θ, r) and gn
(
θ̄, r
)
are in

a distance of at most γ on the θ-axis, because θ, θ̄ ∈ [c, c+ γ], gn (Kc,γ) = g̃[nqσnn ] (Kc,γ) and the
map g̃[nqσnn ] preserves the distances on the θ-axis. Thus there are β̄ ∈ [s1, s2] and r2 ∈ S̃r such

that gn (θ, r) =
(
β̄, r2

)
. So (θ, r) ∈ Φn

(
Î
)
∩ g−1

n

(
S̃
)
.

Altogether the following inclusions are true:

Φn
(
Î
)
∩
(
S1 ×Q1

)
⊆ Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ Φn

(
Î
)
∩
(
S1 ×Q

)
Thus we obtain: ∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S̃)

))
· λ (J)− µ

(
Î
)
· µ
(
S̃
)∣∣∣

≤ max

(∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q

))
· λ (J)− µ

(
Î
)
· µ
(
S̃
)∣∣∣ ,

∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q1

))
· λ (J)− µ

(
Î
)
· µ
(
S̃
)∣∣∣)

(7)
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We want to apply Lemma 4.11 for K = S̃r, L = Sθ and b = [n · qσnn ] (note that the requirements
4 · 1−2ε

a − γ ≤ 3 · 1−2ε
a < 1

qσnn
= λ̃ (L) and b · λ(K) = [nqσnn ] · q−σnn ≥ 1

2nq
σn
n · q−σnn > 2 for n > 4

are fulfilled):∣∣∣λ (Q)− µ
(
S̃
)∣∣∣

≤ 2
[n · qσnn ]

· λ̃ (Sθ) +
2γ

[n · qσnn ]
+ γ · λ

(
S̃r

)
+ 4 · 1− 2ε

a
λ
(
S̃r

)
+ 8 · 1− 2ε

[nqσnn ] · a

≤ 4
n · qσnn

· λ̃ (Sθ) +
4

n · qσnn · qσnn
+

1
n · qσnn

· λ (Sr) + 4 · 1− 2ε
n · q2

n

· λ (Sr) +
16 · (1− 2ε)
n · qσnn · n · q2

n

≤ 14
n
· µ (S)

In particular we receive from this estimate: 14
n · µ (S) ≥ λ (Q) − µ

(
S̃
)
≥ λ (Q) − µ (S), hence:

λ (Q) ≤
(
1 + 14

n

)
· µ (S) ≤ 4 · µ (S).

Analogously we obtain: λ (Q1) ≤ 4 · µ (S).
Since Q as well as Q1 are a finite union of disjoint intervals contained in J and Φn

(
1

n·q2
n
, 1
n

)
-

distributes the interval Î on J we get:∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q

))
· λ (J)− µ

(
Î
)
· λ (Q)

∣∣∣ ≤ 1
n
· µ
(
Î
)
· λ (Q) ≤ 4

n
· µ
(
Î
)
· µ (S)

as well as∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q1

))
· λ (J)− µ

(
Î
)
· λ (Q1)

∣∣∣ ≤ 1
n
· µ
(
Î
)
· λ (Q1) ≤ 4

n
· µ
(
Î
)
· µ (S)

Now we can proceed∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q

))
· λ (J)− µ

(
Î
)
· µ
(
S̃
)∣∣∣

≤
∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q

))
· λ (J)− µ

(
Î
)
· λ (Q)

∣∣∣+ µ
(
Î
)
·
∣∣∣λ (Q)− µ

(
S̃
)∣∣∣

≤ 4
n
· µ
(
Î
)
· µ (S) + µ

(
Î
)
· 14
n
· µ (S) =

18
n
· µ
(
Î
)
· µ (S)

Noting that µ (S1) = µ
(
S̃
)
− 2γ · λ

(
S̃r

)
and so µ

(
S̃
)
− µ (S1) ≤ 2 · 1

n·qσnn · λ
(
S̃r

)
≤ 2

n · µ (S)
we obtain in the same way as above:∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q1

))
· λ (J)− µ

(
Î
)
· µ
(
S̃
)∣∣∣ ≤ 20

n
· µ
(
Î
)
· µ (S)

Using equation 7 this yields:∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n

(
S̃
)))

· λ (J)− µ
(
Î
)
· µ
(
S̃
)∣∣∣ ≤ 20

n
· µ
(
Î
)
· µ (S)

Finally we conclude with the aid of equation 6 because of ε = 1
8n4 :∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S)

))
· λ (J)− µ

(
Î
)
· µ (S)

∣∣∣ ≤ 21
n
· µ
(
Î
)
· µ (S)
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Now we are able to prove the aimed weak mixing property:

Proposition 4.13. Let fn = Hn ◦ Rαn+1 ◦ H−1
n and the sequence (mn)n∈N be constructed as

above. Suppose additionally that d0 (fmn , fmnn ) < 1
2n for every n ∈ N, ‖DHn−1‖0 ≤

ln(qn)
n and

that the limit f = limn→∞ fn exists.
Then f is weak mixing.

Proof. To apply Lemma 4.9 we consider the partial partitions νn := Hn−1 ◦ gn ◦ D−1
ψn,γn

(ηn).
As proven in Lemma 4.10 these partial partitions satisfy νn → ε. We have to establish equation
4. For it let ε > 0 and a cube A ⊆ S1 × (0, 1) be given. There exists N ∈ N such that
A ⊆ S1 ×

[
25n2 · εn, 1− 25n2 · εn

]
for every n ≥ N . Because of Lemma 4.8 we obtain for every

În ∈ ηn: Φn
(
În

)
⊇ [c, c+ γ] ×

[
25n2 · εn, 1− 25n2 · εn

]
for some γ ≤ 1

n·q2
n
. Furthermore, we

note fmnn = Hn ◦Rmnαn+1
◦H−1

n = Hn−1 ◦ gn ◦ Φn ◦Dψn,γn ◦ g−1
n ◦H−1

n−1.
Let Sn be a cube of sidelength q−σnn contained in S1 ×

[
25n2 · εn, 1− 25n2 · εn

]
= S1 × J . We

look at Cn := Hn−1 (Sn), Γn ∈ νn, and compute (since gn and Hn−1 are measure-preserving):∣∣µ (Γn ∩ f−mnn (Cn)
)
− µ (Γn) · µ (Cn)

∣∣ =
∣∣∣µ(În ∩ Φ−1

n ◦ g−1
n (Sn)

)
− µ

(
În

)
· µ (Sn)

∣∣∣
≤ 1
λ (J)

·
∣∣∣µ(În ∩ Φ−1

n ◦ g−1
n (Sn)

)
· λ (J)− µ

(
În

)
· µ (Sn)

∣∣∣+
1− λ (J)
λ (J)

· µ
(
În

)
· µ (Sn)

Since λ (J) ≥ 1
2 and so: 1−λ(J)

λ(J) ≤ 2 · (1− λ (J)) ≤ 2
n . We continue by applying Lemma 4.12:

∣∣µ (Γn ∩ f−mnn (Cn)
)
− µ (Γn) · µ (Cn)

∣∣ ≤ 2 · 21
n
· µ
(
În

)
· µ (Sn) +

2
n
· µ
(
În

)
· µ (Sn)

=
44
n
· µ
(
În

)
· µ (Sn)

Moreover, it holds diam(Cn) ≤ ‖DHn−1‖0 · diam (Sn) ≤ q
r(n−1)
n−1 ·

√
2

qσnn
= q

r(n−1)
n−1 ·

√
2

q
4·r(n−1)
n−1

,

i.e. diam(Cn) → 0 as n → ∞. Thus we can approximate A by a countable disjoint union
of sets Cn = Hn−1 (Sn) with Sn ⊆ S1 ×

[
25n2 · εn, 1− 25n2 · εn

]
a cube of sidelength q−σnn in

given precision, when n is chosen big enough. Consequently for n sufficiently large there are
sets A1 =

⋃
i∈Σ1

n
Cin and A2 =

⋃
i∈Σ2

n
Cin with countable sets Σ1

n and Σ2
n of indices satisfying

A1 ⊆ A ⊆ A2 as well as |µ(A)− µ(Ai)| ≤ ε
3 · µ(A) for i = 1, 2.

Additionally we choose n such that 44
n < ε

3 holds. It follows:

µ
(
Γn ∩ f−mnn (A)

)
− µ (Γn) · µ (A)

≤µ
(
Γn ∩ f−mnn (A2)

)
− µ (Γn) · µ (A2) + µ (Γn) · (µ (A2)− µ (A))

≤
∑
i∈Σ2

n

(
µ
(
Γn ∩ f−mnn

(
Cin
))
− µ (Γn) · µ

(
Cin
))

+
ε

3
· µ (Γn) · µ (A)

≤
∑
i∈Σ2

n

(
44
n
· µ
(
În

)
· µ
(
Sin
))

+
ε

3
· µ (Γn) · µ (A)

=
44
n
· µ (Γn) · µ

 ⋃
i∈Σ2

n

Cin

+
ε

3
· µ (Γn) · µ (A) ≤ ε

3
· µ (Γn) · µ (A2) +

ε

3
· µ (Γn) · µ (A)

=
ε

3
· µ (Γn) · µ (A) +

ε

3
· µ (Γn) · (µ (A2)− µ (A)) +

ε

3
· µ (Γn) · µ (A) ≤ ε · µ (Γn) · µ (A)
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Analogously we estimate: µ (Γn ∩ f−mnn (A))−µ (Γn) ·µ (A) ≥ −ε ·µ (Γn) ·µ (A). Both estimates
enable us to conclude: |µ (Γn ∩ f−mnn (A))− µ (Γn) · µ (A)| ≤ ε · µ (Γn) · µ (A).

By Lemma 3.11 the requirement of the proximity between f and fn is fulfilled. Hence f is
weak mixing.

5 Construction of the f-invariant measurable Riemannian
metric

Let ω0 denote the standard Riemannian metric on M = S1× [0, 1]. The following Lemma shows
that the conjugation map hn = gn ◦D−1

ψn,γn
◦ φn ◦Dψn,γn constructed in section 2 is an isometry

with respect to ω0 on the elements of the partial partition ζn.

Lemma 5.1. Let D−1
ψn,γn

(
În

)
∈ ζn. Then hn|D−1

ψn,γn
(În) is an isometry with respect to ω0.

Proof. As noted in Remark 2.7 Dψn,γn acts as an isometry on any element D−1
ψn,γn

(
Ǐn
)
∈ ζn.

Next we observe that φn is an isometry on such an element Ǐn by the choices of ε1 and ε2 in the
construction of the conjugation map φn as well as the positioning of the elements Ǐn. Here the
“inner rotation map” is important.
Moreover, we compute that φn

(
Ǐn
)
lies in the “good area” of the map gn. But the prior ap-

plication of D−1
ψn,γn

causes a translation of
(

1 + 1
q3
n

+ ...+ 1
q3+n−1
n

)
· u · 4εn with some u ≤ n2

2

in the r-coordinate. At first we observe that D−1
ψn,γn

◦ φn
(
Ǐn
)
is still contained in the same

definition section of gn by our choice of j(2+3+...+(3+k−1))
1 . Thus we compare the caused trans-

lation with an ε
b·a = 16n2·εn

n·q
2+3·(k+1)+ k·(k+1)

2
n ·[nqσnn ]

-domain of the map gn = ga,b,ε,δ on the r-axis.

In case of 2 + 3 · (k + 1) + k·(k+1)
2 ≥ 3 + n − 1 the shifting is a multiple of such a domain

and then D−1
ψ̄n,γn

◦ φn
(
Ǐn
)
is still contained in the “good area” of gn. In the other case we write

1+ 1
q3
n

+...+ 1
q3+n−1
n

= l

q
2+3·(k+1)+ k·(k+1)

2
n

+R with l ∈ Z and some rest term R < 2

q
2+3·(k+1)+ k·(k+1)

2 +1
n

.

Since l

q
2+3·(k+1)+ k·(k+1)

2
n

· u · 4εn is a multiple of ε
b·a we consider 2

q
2+3·(k+1)+ k·(k+1)

2 +1
n

· u · 4εn. We

have

n · u · [nqσnn ] · 1
2n2 · εn

≤ n · n
2

2
· n · qσnn · 2 · n9 · q5·r(n−1)+1

n−1

=n13 · q4·r(n−1)
n · q5·r(n−1)+1

n−1 = n13 · q9·r(n−1)+1
n−1 < qn

by our assumptions on the numbers qn and σn in section 3.2. So this deviation is bounded by

2

q
2+3·(k+1)+

k·(k+1)
2 +1

n

· u · 4εn <
2

q
2+3·(k+1)+

k·(k+1)
2

n

· 2n2 · εn
n · u · [nqσnn ]

· u · 4εn

= εn ·
16n2 · εn

[nqσnn ] · n · q2+3·(k+1)+
k·(k+1)

2
n

.

Then D−1
ψn,γn

◦ φn
(
Ǐn
)
is still contained in the “good area” of gn.

Thus hn acts as an isometry on the elements of the partition ζn.
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This Lemma implies that h−1
n |hn(D−1

ψn,γn
(În)) is an isometry as well.

In the following we construct the f -invariant measurable Riemannian metric. This construction
parallels the approach in [GK00], section 4.8.. Therefor we put ωn :=

(
H−1
n

)∗
ω0. Each ωn

is a smooth Riemannian metric because it is the pullback of a smooth metric via a C∞ (M)-
diffeomorphism. Since R∗αn+1

ω0 = ω0 the metric ωn is fn-invariant:

f∗nωn =
(
Hn ◦Rαn+1 ◦H−1

n

)∗ (
H−1
n

)∗
ω0 =

(
H−1
n

)∗
R∗αn+1

H∗n
(
H−1
n

)∗
ω0 =

(
H−1
n

)∗
R∗αn+1

ω0

=
(
H−1
n

)∗
ω0 = ωn

With the succeeding Lemmas we show that the limit ω∞ := limn→∞ ωn exists µ-almost every-
where and is the aimed f -invariant Riemannian metric.

Lemma 5.2. The sequence (ωn)n∈N converges µ-a.e. to a limit ω∞

Proof. For every N ∈ N we have for every k > 0:

ωN+k =
(
H−1
N+k

)∗
ω0 =

(
h−1
N+k ◦ ... ◦ h

−1
N+1 ◦H

−1
N

)∗
ω0 =

(
H−1
N

)∗ (
h−1
N+k ◦ ... ◦ h

−1
N+1

)∗
ω0

Since the elements of the partition ζn cover M except a set of measure at most 3
n2 by Remark

2.6 Lemma 5.1 shows that ωN+k coincides with ωN =
(
H−1
N

)∗
ω0 on a set of measure at least

1−
∑∞
n=N+1

3
n2 . As this measure approaches 1 for N → ∞ the sequence (ωn)n∈N converges on

a set of full measure.

Lemma 5.3. The limit ω∞ is a measurable Riemannian metric.

Proof. The limit ω∞ is a measurable map because it is the pointwise limit of the smooth metrics
ωn, which in particular are measurable. By the same reasoning ω∞|p is symmetric for µ-almost
every p ∈M . Furthermore ω∞ is positive definite, because ωn is positive definite for every n ∈ N
and ω∞ coincides with ωN on T1M ⊗ T1M minus a set of measure at most

∑∞
n=N+1

3
n2 . Since

this is true for every N ∈ N ω∞ is positive definite on a set of full measure.

Remark 5.4. In the proof of the subsequent Lemma we will need Egoroff’s theorem (for example
[Ha65], §21, Theorem A): Let (N, d) denote a separable metric space. Given a sequence (ϕn)n∈N
of N -valued measurable functions on a measure space (X,Σ, µ) and a measurable subset A ⊆ X,
µ (A) < ∞, such that (ϕn)n∈N converges µ-a.e. on A to a limit function ϕ. Then for every
ε > 0 there exists a measurable subset B ⊂ A such that µ (B) < ε and (ϕn)n∈N converges to ϕ
uniformly on A \B.

Lemma 5.5. ω∞ is f -invariant, i.e. f∗ω∞ = ω∞ µ-a.e..

Proof. By Lemma 5.2 the sequence (ωn)n∈N converges in the C∞-topology pointwise almost
everywhere. Hence we obtain using Egoroff’s theorem: For every δ > 0 there is a set Cδ ⊆ M
such that µ (M \ Cδ) < δ and the convergence ωn → ω0 is uniform on Cδ.
The function f was constructed as the limit of the sequence (fn)n∈N in the C∞-topology. Thus
f̃n := f−1

n ◦ f → id in the C∞-topology. Since M is compact this convergence is uniform, too.
Furthermore the smoothness of f implies: f∗ω∞ = f∗ limn→∞ ωn = limn→∞ f∗ωn. Hereby we
compute on Cδ: f∗ω∞ = limn→∞

((
fnf̃n

)∗
ωn

)
= limn→∞

(
f̃∗nf

∗
nωn

)
= limn→∞ f̃∗nωn = ω∞,

where we used the uniform convergence on Cδ in the last step. As this holds on every set Cδ
with δ > 0 it also holds on the set

⋃
δ>0 Cδ. This is a set of full measure and therefore the claim

follows.

Hence the aimed f -invariant measurable Riemannian metric ω∞ is constructed.
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