Natural measures of diffeomorphisms with
arbitrary Liouvillean rotation number
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Abstract

We construct smooth diffeomorphisms on the disc D? and the annulus S* x [0, 1] with
exactly three ergodic invariant measures and prescribed rotation number on the boundary.
Moreover, these diffeomorphisms admit an invariant measurable Riemannian metric and are
weak mixing with respect to the Lebesgue measure on the manifold.
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Introduction

By the well-known Brouwer fixed-point theorem every continuous function on the disc D? has
a fixed point. Indeed Bourgin proved with the aid of the Brouwer translation theorem that for
every area-preserving orientation-preserving homeomorphism of the disc there is a fixed point
inside the disc ([Bo68]). Hence any area- and orientation-preserving diffeomorphism of the disc
has at least three ergodic invariant measures: The Dirac-measure § at a fixed point in the interior
of the disc, a measure supported at the boundary and any ergodic component of the area. In
[FK04], §3, Fayad and Katok constructed diffeomorphisms with this minimal number of ergodic
invariant measures. In fact they proved that the set of such diffeomorphisms is a residual subset
in the closure A’ (]D)Q) in the C'*°-topology of the conjugates of rotations with conjugacies fixing
every point of the boundary and the fixed points of the action by rotations (the boundary points
and the fixed points of the action are called singularities).

As noted in [FK04| the pictures of rotations and conjugacies are essentially identical on the disc
D? and the annulus S! x [0, 1]: We have polar coordinates (6, 7) and the rotations of the standard
circle action R = {R;},.q: are given by R; (6,7) = (6 4t,7). In this connection the origin of
the disc, which is a fixed point of the circle action, corresponds to the boundary S! x {0} in the
case of the annulus (so considering the ergodic invariant measures the J-measure at the fixed
point of the circle action in the disc-case corresponds to the Lebesgue measure on the boundary
component S' x {0}). Since all the conjugation maps of our constructions will coincide with the
identity near r = 0 and r = 1 the differences between the disc and the annulus are insignificant.
For the sake of convenience we will present our constructions in case of the annulus S' x [0, 1].
In both cases the Lebesgue measure p on the manifold, the d-measures at the fixed points of
the rotations and the Lebesgue measures on the boundary components are called the natural
measures.

We will extend the result of [FK04] by constructing diffeomorphisms with the minimal number
of ergodic invariant measures in the restricted space

oo

AL (M) ={HoR,oH-': H € Diff** (M,u), H=id on the singularities}c

for every Liouvillean number o € S!. In addition our constructed diffeomorphisms are weak
mixing with respect to the area and preserve a measurable Riemannian metric. So this result
is in line with [Kunl3al, [Kunl3b| and [Kunl3c], where in extension of [GKO00| constructions
of diffeomorphisms with ergodic properties that preserve a measurable Riemannian measure are
exhibited. At this juncture in [Kunl3b] and [Kunl3c] the number of ergodic invariant measures
for diffeomorphisms on the torus T™ of dimension m > 2 is examined. By [Kunl13b], Theorem
1, the set of weak mixing and strictly ergodic diffeomorphisms is a dense Gs-set in A, (T™) =

(10

{hoRyoh=t:he Diff>e(Tm u)}  for every Liouvillean number a. However, other numbers
of ergodic invariant measures are possible as well: According to [Kunl3c|, Theorem 1, for any
d € N the set of minimal diffeomorphisms preserving exactly d ergodic measures and a measurable
Riemannian metric is dense in A, (T™). The second result is connected to [Win01], where for
any d € N A. Windsor constructed minimal diﬁeomog)ilisms with d ergodic invariant measures
in A(M):={hoS;oh=1 : heDiff* (M,v),t €S}  onany compact and connected smooth
boundaryless manifold of dimension m > 2 admitting a free C*°-action & = {S;},.s1 preserving
a smooth volume v.

In this paper we consider the manifolds D? and S! x [0, 1] with boundary. Indeed we will prove:

Theorem 1. Let M be the disc D* or the annulus S* x [0,1] and R = {R;},cq1 be the respective
standard action by rotations. Then there exists a smooth diffeomorphism f € AL (M) that has
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exactly three ergodic invariant measures, namely the natural measures on M, is weak mixing with
respect to the Lebesgue measure on M and preserves a measurable Riemannian metric.

In section we will conclude

Corollary 1. Let M be the disc D* or the annulus S* % [0,1] and R = {Ry},cq1 be the respective
standard action by rotations. Then the set of smooth diffeomorphisms f € Al (M) that have
exactly three ergodic invariant measures, namely the natural measures on M, are weak mizing
with respect to the Lebesque measure on M and preserve a measurable Riemannian metric is a
dense subset of Al (M) in the C*°-topology.

as well as

Corollary 2. The set of smooth diffeomorphisms f € AL (M) that have exactly three ergodic
invariant measures, namely the natural measures on M, and are weak mizing with respect to the
Lebesgue measure on M is a residual set (i.e. it contains a dense Gs-set) in the C*°-topology in

AL (M).

1 Preliminaries

1.1 Definitions and notations

In addition to the definitions presented in [Kunl3al, chapter 1.1., we introduce the subsequent
notations:

Definition 1.1. 1. For a continuous function F : [0,1] x [-1,2] - R

1Bl = __omax1F (2)

2. Let f € Diff* (Sl X [71,2]) with coordinate functions f; be given. Then we consider f; as
a function [0, 1] x [-1,2] — R and define

||Df||0,ext = i,j’rél{al),CQ} H‘DjfiHO,ext

and

Da (£ ) lgene ¢ 1= 1,2, @with 0 < |a| < k}

11l ext 2= max { [ Dafillg.exe

1.2 Proof of the Corollaries
The main Theorem follows from the subsequent Proposition:

Proposition 1.2. For every Liouvillean number o there is a sequence (o ),,cy of rational num-
bers ., = z—" satisfying lim,, . | — a,| = 0 monotonically and a sequence (hy,),, oy of measure-

preserving ciiﬁeomorphisms satisfying h,oR1 = R oh, as well as h, = id in a neighbourhood
an an

of the boundary, such that the diffeomorphisms f, = HpoRq, o H, ! with H, = hyohgo...oh,
converge in the Diff>° (M)-topology and the diffeomorphism f = lim,_,o fn has exactly three
ergodic invariant measures (namely the Lebesgue measure p on M = S* x [0,1], the Lebesgue
measures 6° and §* on the boundary components S* x {0} and S* x{1} respectively), is weak mizing
with respect to w, admits an invariant measurable Riemannian metric and satisfies f € Al (M).
Furthermore for every € > 0 the parameters in the construction can be chosen in such a way that
doo (f, Ra) < €.



Preliminaries 4

By this Proposition weak mixing diffeomorphisms preserving exactly three ergodic measures
as well as a measurable Riemannian metric are dense in A/, (M):

Because of AL, (M) ={ho Ry oh~!:h € Diff> (M, u), h =id on the boundary} it is enough
to show that for every diffeomorphism h € Diff™ (M, 1), h = id on the boundary, and every € > 0
there is a weak mixing diffeomorphism f preserving a measurable Riemannian metric such that

dso (f, hoR,o hil) < e. For this purpose let h € Diff*® (M, u) with h = id on the boundary

and € > 0 be arbitrary. By [OmT74], p. 3, resp. [KM97]|, Theorem 43.1., Diff>* (M) is a Lie
group. In particular the conjugating map g +— hogoh~! is continuous with respect to the metric
d~. Continuity in the point R, yields the existence of § > 0, such that du (g, Ry) < ¢ implies
doo (h ogoh™',hoR,o0 h’l) < €. By Proposition we can find a weak mixing diffeomorphism
f with exactly three ergodic invariant measures, f-invariant measurable Riemannian metric w
and doo(f, Ra) < 6. Hence f:=ho foh ! satisfies du (f,hORa Oh_1> < e. Note that f

is weak mixing, has exactly three ergodic measures and preserves the measurable Riemannian
metric @ = (h 1)*w
Hence Corollary [I] is deduced from Proposition [[.2]

Moreover, we can show that the set of weak mixing diffeomorphisms is generic in A/, (M)
(i.e. it is a dense Gs-set) using Proposition and the same technique as in [Hab6], section
Category, as well as [Kunl3a|, Remark 1.9..

Next let = be a countable dense subset of C' (M, R). For p € Z and € > 0 we consider the set

S(p,e) =

{fEA;(M) dN e N: mf

1m1 .
G )= [ nae

1=

<€foreverym2Nandx€M}

at which © is the simplex generated by the measures y, §° and §'. Obviously such a set S (p, ¢) is
open. It is also a dense subset of A/, (M) because every constructed diffeomorphism f € AL (M)
is an element of S (p,£) due to Lemma and the set of constructed diffeomorphisms is dense
as seen above. By the same reasoning as at the end of section

NN (os):

i€EN keN

which as a countable intersection of open and dense sets is a dense Gs-set, is contained in the
set of diffeomorphisms f € A/ (M) with the natural measures as the only ergodic invariant
measures. Since the intersection of dense Gs-sets is a dense Gs-set Corollary [2]is proven.

1.3 Sketch of the proof

The constructions are based on the “approximation by conjugation”method developed by D.V.
Anosov and A. Katok in [AK70]. Here one constructs successively a sequence of measure-
preserving diffeomorphisms f,, = H,,0S,,,,, o H- ', where the conjugation maps H,, = hjo...0h,
and the rational numbers «,, = % are chosen in such a way that the functions f, converge to
a diffeomorphism f with the aimed properties. Indeed we have to prove convergence of (fy),, cx
in A, (S' x [0,1]) for a prescribed Liouville number . For it we need careful estimates on the
norms of our explicitly defined conjugation maps in section [3.1]

In our setting the conjugation map h, is made up of three maps introduced in section
hn = gn o D;:’% © ¢y © Dy, ~,, which coincides with the identity in a neighbourhood of the
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boundary.
At this juncture the trapping map Dy, -, is used to gain control of almost everything of every

orbit {Hn o Rﬁnﬂ (ZC)}k o . with the aid of the trapping regions. This allows us to prove
=0, qny1—

a convergence result on Birkh?)i;fr sums (see Lemma , which in turn enables us to exclude the
existence of further ergodic invariant measures besides the natural measures.

The conjugation map ¢, is used to map the trapping regions (which have nearly full length in the
r-coordinate) on sets of small diameter and contrariwise to map elements of a partial partition 7,
on stripes with r-length almost 1. The second property is used in the proof of the weak mixing
property which is based on the notion of a (v, €)-distribution. In this proof we also need a map
introducing shear in the f#-coordinate. The map g, has to play this role. Since the conjugation
maps have to act as an isometry on large parts of the manifold in order to construct a f-invariant
measurable Riemannian metric a careful design of each conjugation map is required. The appli-
cation of D;: ., Is necessary to make h,, to a diffeomorphism onto S! x [0, 1] (see Remark.
Then we will construct the f-invariant measurable Riemannian metric by the same approach as
in [Kunl3a]: The conjugation maps are constructed in such a way that they act as isometries
on elements of a partial partition (,, with respect to the standard metric wy. Since these par-
tial partitions converge to the decomposition into points we can prove the convergence of the

. . . _ * . . . . .
Riemannian metrics w,, := (Hn 1) wp to a f-invariant measurable Riemannian metric.

2 Explicit constructions

Let (n) :==r(n) = 8-n-(n+5) and we put €, = ———--—+. In Remark 4.1 we will explain
n—1

4-nltt.g>"

this choice of ¢,,. Moreover, o, € (0,1) is a parameter that will be determined in Remark
Furthermore, we fix an arbitrary countable set = = {p1, pa, ...} of Lipschitz continuous functions
pi + St x [0,1] — R that is dense in C (S' x [0,1],R). Since C (S* x [0,1],R) is separable and
Lipschitz continuous functions are dense in C (S! x [0,1],R) this is possible. This set = will be
used in section [I1] to prove that the natural measures are the only ergodic invariant ones.

2.1 The trapping map

To exclude the existence of further ergodic measures we have to gain control over a large pro-
portion of the orbit {Hn oR! (x)} for every x € S x [0,1]. For this purpose
1=0,1,...,qn4+1—1

Q1
we use for every n € N a smooth map v, : [0,1] — R satisfying

1

e 1, is non-decreasing on [07 5] and non-increasing on [1 1}.

2

e 1, is equal to k-4e, on [%

+ A B - Ll for0< k< V;J —1 and ), is equal to k-4e,

2 nEr T n2 A

(1£]-1) e

With it we define the map Dy, : [0,1] x R — R? by:

n2 -1 n?— n2
on [”z_k_l + L nick L] for 0 < k < [gJ —1. On [L 2ng ,,LLZJ} it is put to

1 1 1

n n
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Using the maps Cs, (6,7) = (7, - ,7) we construct the map
= 1 1
Dy, ~, =C5 0Dy, oC, : |0, ’7 xR — 10, —| xR.

Since this map coincides with the identity in a neighbourhood of the boundary of the sector on
the -axis we can extend it to a smooth map Dy, . : S' x R — S! x R using the description

Dy, ~y,oR1 =R, oDy, -, foranyl € Z. In our construction we use
Tn Tn
n-(n—1)
24344+...4+(34n—1 243 nt+—75—
Vn:n'qn++++(+n ):n'QH :

2

Remark 2.1. The trapping map Dy, -, causes a r-translation by at most 2- Q%J - 1) de, <

an? - g,,.

Remark 2.2. We have Dy, .. (S* x [0,1]) C S' x [-1,2]. This motivates our definition of
[[Ilg.exs @and is used in the norm estimates in section (3.1f implicitly.

2.2 Trapping regions

We introduce three kind of trapping regions:
In the interior of St x [0,1] and for [ € Z as well as k = 0,...,n — 1 we consider the sets

int _
LkogY g
3 k(=)
! 3 FIORENN (3RS i)
U —+ : 2 : gt 2i3+4+ F(3+k—1) + 2+3+4+2 +(3+k—1)+1 +
qn n . qn n . qn n . qn n . qn e i~ e
B0 t@-“@ﬂ) t(g-(n_1)+7"“<’;*”—k) )
2 1 1
+ n- q2+3+4+...+(3+k—1)+3+k + n- qi+3+...+(3+k—1)+(3+k)+1 tot Vn + n4 '%17
3 (n—1)4 =D _p
L,k e Ly
—+ + ...+ -
N R - S A S
q q?ﬁk qg+k " qg+k qg-&-k

where the union is taken over tgj) €7,0< tgj) <gn—1,forj=1, ...,3-(n—1)+%—k apart

(3-k+2=D 41 (3-k+ 2D 41

from ¢ satisfying [en - ¢n | < 1) < gn—[en-qn]—1aswellas t§") € 7,
[(4712 + 1) En - qn] < t(Ql) <qn,— [(4712 + 1) En* qn] — 1 as well as tél) €7Z,0< tg) <gq, — 1, for
[=2..3+k

Then the set of trapping regions of the first kind consists of all sets D@;l . (Slir;: (1) ﬁ), where
o n sRsJ1 HJ2
all ji(l) € Z satisty {18n25n . qn—| < ji(l) < qn — {18n25n . qn—| — 1 for i = 1,2 and jés) € Z,

0 Sjés) <g,—1lfors=2,...,3+k.
In the neighbourhood of the boundary S* x {0} we introduce the trapping regions of the

. & o1 .
second kind Sl()?kngl)ﬁj; =Dy Sﬁk,ﬁ”,ﬁ) N (Sl x [0, 1]), at which
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0 —

St s =
3 Relh=1)
] N LA LA i R LN
qn n - qn n- q% n- q?b n- qi+3+4+ A4(3+k-1) n q'r27,+3+4+“‘+(3+k_1)+1
(3+k) ((3rk R 1) e ) 1
1 1
+ " q721+3+4+...+(3+k71)+3+k + " q721+3+...+(3+k71)+(3+k)+1 +ot o + PYRP

3 (n_1)q =D _p
Lok +t§ R 1
G Noqn . nt .y
n n n n

x [0,4-n*&,]

where the union is taken over all tgj) €Z,0< tgj) <g¢g,—l,forj=1,..,3-(n—-1)+ % —k

3.k k-(k—1) 1 3.k k-(k—1) 1
apart from tg =) satisfying [e,, - gn ] < tg )

Sqn_ |—€nQn—| -1
Then the set of trapping regions of the second kind consists of all sets Szok 1) ~, where all ji(l) S/
sR01 7502

satisfy (187126” 'qn] < ji(l) < qn— [187125" . qn] —1fori=1,2 and jés) €Z,0< jés) <qg,—1
for s=2,...,.3+ k.

In the neighbourhood of the boundary S! x {1} we introduce the trapping regions of the third

‘g & — p-1 1 1 :
kind Sl O D, .. (SLk’Al)’jﬂ?) N (S* x [0,1]), at which
1
J§ ),Jz
3. Bek=1)
U L-f— i +j§1) +tg1) + ...+ tg ) + jél) +
G nogn  n-@  n-gd n- T BEED 2T BT
(34k) (3kt =54 1) (3-(n=1)+ 5= k)
t t 1
+ " qT2L+3+4+...+(3+k—1)+3+k + " q2+3+...+(3+k—1)+(3+k)+1 ot o + PYRO
3. 1 M k
! k 3= ) 11 1
— + ot -—

x [1—4-n? e,,1]

where the union is taken over all tgj) €Z,0< tgj) <g¢g,—1l,forj=1,..,3-(n—1)+ % —k

& k(k Dy 3. fpg k(R =1)
(3-k+ ) satisfying [e,, - gn]| < tg L)

Ser_I—&—n Qn~|_1
Then the set of trapping regions of the third kind consists of all sets S S0 where all 5,

:717

apart from ¢,
D c7

K2

satisfy [18n2e, - gn] < jV < g, — [18n%e, - qu] —1fori=1,2 and j§ € Z, 0 < j§) < g, — 1
for s =2,...,3+ k.

Remark 2.3. By the requirements on the numbers t( “) and ]Z( ") all blocks overlying ——bectlons

on the f-axis, that are part of trapping regions belongmg to one kind are also part of trapping
regions belonging to the other kinds. -
Let z = (0,r) € S' x [0,1] be arbitrary. By the construction of the map D,, there are at
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most four sections [% + 4, k+21 — #] on the domain [0,1] such that r does not belong to ei-

ther vt ([ + 2, 6t 175 10 a2 2 ]), wt ([ + A B - L] [L—dn? e, 1]) o

n2 ni 2 n2 nir n2
Uit ([ + s 55— a] x [(4n° +1) - en, 1= (407 +1) -],
We have to bear the gaps of our trapping region in the r-coordinate in mind. Therefore we note
that ( Rt 3+k n ) -4e,, is a multiple of ﬁ and this translates by full qs%—blocks in the
T—coordlnate. Hence there are at most four further sections | —£— + — , kil _ 1 lon 0,1
nZy, U onfy, 0 n?y,  niy, Y
such that r does not belong to either D@;iﬁn ({nkw + n41%, f;;i — n41'y:| X [0,4712 En]) or

D~ 1 k + 1 k+1 1 % Q_’_ + t(3+k) + _En ﬁ_’_ + tg3+k)+1 _ _En or
Ynsyn \ [nPyn | ontyn? nPyn nion an q3+’c @SR g T @tk @tk

—1 k 1 k+1 1 _ 2,
Dwn/\/n (I:TLQ'YH + ntyn ) n2y, 7’14'Yni| x [1 4n Ens 1])

Forl = 0,...qn —1, k = 0,1,...n — 1 a trapping region on [qi +oh, Ly T’jiql] % [0,1]

n-(n—=1)
consists of at least (1 —3-¢&,) - qi”* 2 (3+k) many ——sectlons We fix [, k j; ),jg Since

{i- an+1}z‘:0,.“ gnsa—1 18 equidistributed on St the number of iterates ¢, such that the orbit

{ngrl (z )}i:() P is captured by one of the 3 trapping regions Dw o <Slt7k7j§1)7j;> N
(S' x [0,1]), t € {int, 0,1}, is at least

n-(n—1)

2
3nd ™D (34k) o L—=
1-3-2,) g z . ) P )
( €n) " q (n ) {q +1 nz.%J

Depending on the point z € S' x [0,1] there is a portion @} (z) of these iterates spent in
trapping regions of the specific kind, ¢ € {int,0,1}. This portion does not depend on the indices

Ik, j£1)7 j2. Then the number of iterates i, such that the orbit { - (a:)} meets
1=0,...,qn4+1—1
t 1 :
an arbitrary trapping region Dwm% (Sl)k7j§1)’j;) N (S* x [0,1]), is not less than
3n+ 2= — (3+k) " (z) ( 2 8) - %
. w l‘ . n —_— . q 1 - —_—
" K " n? - Tn
n 2 1 - %
>wp (2) - gnr1 - (0 = 8) 55
n3 - qn
12 1
n
>wy (x) “Qn+1 - (1 - ng) ’ W
iterates. Moreover, for every ¢t € {int,0, 1} there are (qn -2 {181125” . qﬂ)2 - @2** trapping
regions of the specific kind on {qi + n2’.€q Ly k+1 ] X Ny x T2 forl=0,...,q, — 1 as well

as k=0,...,n — 1 and so not less than

12 1
(qn -2 {187123'5” : QTL-‘) qi+k qn+1 - <1 — 77‘2) . W

1)\2 12 1 14 1
Zanir \1- 05 ) 1 ) e U ) T

iterates are trapped here. Altogether at least g,11 - (1 — p) iterates are captured.
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Remark 2.4. On the contrary at most % - Qn+1 iterates are not captured by the trapping
regions.

2.3 Sequences of partial partitions

In this subsection we define the two announced sequences of partial partitions (1), .y and

(Cn)pen of M =S' x [0,1].

2.3.1 Partial partition 7,

Initially n,, will be constructed on the fundamental sector [0, qi} x [0,1]. For this purpose we

divide the fundamental sector in n sections:

e On {L M} x [0,1] in case of k € N and 0 < k < n — 2 the partial partition 7,, consists

nqn’ Nqn
of all multidimensional intervals of the following form:

143 (k+1)+ B0t
ko g R 18n” - en
+..+ + S
- gn n- q2 2+3'(k+1)+w 2+3'(k+1)+%
n n-qn n-gn
143 (k1) + 2D
k +J'£l) + +'£+(+)+ S 181 - e ]
: — + .. = HCES i k- (k1 1)
n-q, n-q n. qffs (k+1)+—5— n- q721+3 (k+1)+—5
a 3kt (1 (34+k+1
O S S SO G St
n A R A g 4 gttt

where jél) €7, {18712 “Ep - qn—‘ < jgl) < q,— [18712 “Ep - q,ﬂ —1forl=1,...,3+k+1and
i ez, [18n% 2 gn] <4V < gu—[1802 e - gn] —1for I =1, 143 (k + 1)+ 2ERD,

e On [Z;l , qi} x [0, 1] there are no elements of the partial partition 7,,.

As the image under R;/, with [ € Z this partial partition of {O, q%} x [0, 1] is extended to a
partial partition of S' x [0, 1].
Remark 2.5. By construction this sequence of partial partitions converges to the decomposition
into points.
2.3.2 Partial partition (,
As in the previous case we will construct the partial partition (;,, on the fundamental sector

[O, qi} x [0,1] initially and therefore divide this sector into n sections:

On {L ﬂ} x [0,1] in case of kK € N and 0 < k < n — 1 the partial partition ¢, consists of all

n:qn’ Nqn

sets T, = D;i,% (fn), where I, is a multidimensional interval of the following form:



Explicit constructions 10

1 . 1+3~n+7n'("71)
k ﬁ : i ) s 1
=+t +
. 14342 =1)
k ]{1) ]1( " ) s+1 1
+ 7 +...+ +— -
(1) (3+k+1) (243 (k1) + 25
ZENI M +
Gn q2+k+1 q2+3‘(k+1)+k'(k2+1)
n

343 (k1) (et
GO DT ez e, 1600n* - £2

243 (k1) Bt 213 (k1)L B 0AD) )
N qn B+ [ngn*]  n-qn D+ [ngn"]
(343 (k+1)+ 251 )
1)-16n“-¢
it <]2 i § 1600nt - £2
.es 243 (k+1 +k-(k+1) 243 (k+1 +k-(k+1)
an n-g (+D+=5— [ng3"] q (k+1) T [ngl]

Where ]gl) c Z al’ld ’7100712 cEp - qn-‘ S Jy) S Gn— "100,’12 “Ep -t qn-‘ —1 fOI'l = 1, 1+3 n—|— (’ﬂ 1)’
j,y) € Zand [100n? - &, - qn] < jél) < ¢n—[100n% -y - g | —1forl =1,...,2+3-(k + 1)+ (kQH)’

(3+3(k+1)+EEED 343(k41)4 G o
it =) 7, [ngr] - n < 5 ) < loain)

and 0 < s <n?-—1.

—[ngg"]-n—1aswellas s € N

Remark 2.6. For every n the partial partition (,, consists of disjoint sets, covers a set of measure
at least 1 — % in case of n > 3 and the sequence ((,),, .y converges to the decomposition into
points.

Remark 2.7. Note that Dy, - acts as an isometry on all the partition elements T, € (..

2.4 The conjugation map g,

Let a,b € Z and € € (O, 1—6] such that X - € Z. Moreover, we consider § > 0, such that (1; € Z and
“'Tb"; € Z. We denote [0,1]° by A and [e,1—&]> by A(e). In this setting we recall [Kunl3a],

Lemma 2.4.:

Lemma 2.8. For every € € ( iﬁ] there ezists a smooth measure-preserving diffeomorphism
ge 1 (0,1 = {(z+e-y,y) : z,y€[0,1]}, that is the identity on A (4e) and coincides with the
map (z,y) — (z+e-y,y) on A\ A(e).

Let b € Z, gy : S* x [0,1] — S! x [0,1] be the smooth measure-preserving diffeomorphism
given by g, (6,7) = (6 +b-r,7) and denote [0, ﬂ x {0, ﬁ] by Agpe. Using the map D -
R? — R2,(0,r) — (a -0, b'?“ - r) and g. from Lemma we define the measure-preserving diffeo-
morphism ga b : Aape = Gb (Dape) Y Gape = Doy ©ge © Dap,e. Using the fact that ¢20 € Z
we extend it to a smooth diffeomorphism gg p.e.5 [ , a] [0,1 =48] — g» ([ ] [0,1— 5]) by
the description:

€ 3
Ga,b,e,8 (95 r41- ﬁ) = (l ' E’l . r) + Ga,b,e (07T)

forrE[O,ﬁ]andleZsatlsfylngf ba<l<1 “bra—1.
With the choice § = 12n? - ¢,, we construct the smooth measure-preserving diffeomorphism g,
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on the fundamental sector [O, qi] X [12n2 En,1—12n%. sn] initially and for this divide it into

n sections:
On {n%n,%} x [12n% - e,,1—12n% - ¢,] incase of k € Zand 0 < k < n — 1:

In =09 g ki) BEDE
negn VTR 1 ggn ) t6n2 e, 1202 2,

Since g, coincides with the map gp,.4z») in a neighbourhood of the boundary of the different

sections on the #-axis this yields a smooth map and we can extend it to a smooth measure-

preserving diffeomorphism on S! x [12712 En,1—12n2 ~5n] using the description g, o R1 =
an

R og, forl eZ.

an
Moreover, let x,, : [0,1] — [0, 1] be a smooth function satisfying the subsequent properties:

® Xn is equal to 0 on [0,4n% - £,] as well as on [1 —8n? - &,,1]. On [6n? - e,,1 — 10n? - &,]
Xn takes the value 1.

® Y, is non-decreasing on [4n2 e, 6n% - 5n] and non-increasing on [1 —10n2 -£,,1 — 8n?- 5n].

With it we define g, : S' x [0,12n? - &,] — S* x [0,12n? - &,] and g, : S' x [1 —12n% - &,,1] —
St x [1 —12n? - ¢, 1} by

gn (0,7) = (0 + Xn (r) - [n-q7"] - 7,7)
Since all the constructed maps g, coincide with g4+ in a neighbourhood of the boundary of
the respective domain we can piece them together smoothly to a diffeomorphism g,, : S! x [0,1] —
St x [0,1].
We note that the assumption “'?b"s = Q'Tb‘?’ € 7 is satisfied, because a% =4.nll. qif(lnfl)ﬂ
divides ¢, by our construction of the sequence (), ¢y in Lemma Moreover, g, = id in the
neighbourhoods S* x [0,4n? - €,,] and S* x [1 —8n? - &,,1] of the boundary components.

Remark 2.9. We will call the parts of the domains A, . 5 corresponding to A (4e) of g. the
“good area” of g,.

2.5 The conjugation map ¢,
We modify [Kunl3a|, Lemma 2.6.:

Lemma 2.10. For every j € N and 0 < ¢ < 4%, there exists a smooth measure-preserving

diffeomorphism . ; on R?, which is the rotation in the plane by w/2 about the point (%, %) € R?
on[(j+1)-e,1—(j+1) -] and coincides with the identity outside of [j -€,1 — j - €]*.

2
]

Proof. First of all we introduce the notation A (¢) :== [¢,1 — ¢]". Let 1. be a smooth diffeomor-

phism satisfying

P 7 on B2\ A(j <)
ve ) {<;+;-<x—;>,;+;-<y—;>> on A (G +1)-2)

Furthermore let 7. be a smooth diffeomorphism with the following properties

(1-g2) on{(e—3) +@-1)°"<%
TE (I7y) = _ l 2 o l 2 i
(z,9) on (x 2) + (y 2) BT
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We define ¢. := ¥ ! o 7. o1.. Then the diffeomorphism @. coincides with the rotation on
A((j +1)-€) and with the identity on R?\ A (j - €). From this we conclude that det (D@.) > 0.
Moreover @. is measure-preserving on U, = (R2\ A (j-&)) UA((j + 1) -¢).

As in the proof of [Kunl3a], Lemma 2.4., we construct a diffeomorphism ., that is measure-
preserving on the whole R? and agrees with ¢. on U, with the aid of “Moser’s trick”. O

Furthermore, for A € N we define the maps C) (x1,22) = (A-x1,22) and Dy (z1,22) =
(AN 1, A x2). Let p €N, % € N and % divides ;1. We construct a diffeomorphism 1, 5., in the
following way:

e Consider [0,1 — 26]*: Since 3 divides p we can divide [0,1 — 26)° in cubes of sidelength ﬁ

e Under the map D, any of these cubes of the form H?Zl {%, l”‘q with [; € N is mapped

5
onto [T7_, [li, 1i + 1).

e On [0, 1]2 we will use the diffeomorphism <p€_21,1 constructed in Lemma [2.10] Since this is
the identity outside of A (e2) we can extend it to a diffeomorphism ¢, ; on R? using the
instruction @;}1 (1 + k1,22 + ko) = (k1, ko) + @;1,1 (z1,x2), where k; € Z and z; € [0, 1].

e Now we define the smooth measure-preserving diffeomorphism
Vpses =Dyt op oDy 0 [0,1—28)° — (0,1 - 20]?
e Hereby we define
Y660 (z1,72) =
{ ([Buses @1 = 8,22 = 8)] 46, [Fpses (01 = 22~ 9)|_+6) onlo1 -0
(1, 22) else

This is a smooth map because 15,1,5162 is the identity in a neighbourhood of the boundary
by the construction.

Remark 2.11. For every set W = H?:l [lﬁ + 7, li;rl _ 7‘1}7 where [; € 7Z and r; € R satisfies
75 - p| < €2, we have vy, 5., (W) =W.
Using these maps we build the following smooth measure-preserving diffeomorphism (,zNS Ae,dis0,es
[0,5] xR — [0, 5] X R:
Oresjuistiez = Ox 0 Ppusies © Pej © O

Afterwards ¢y c ;... is extended to a diffeomorphism on S' x R by the description

_ k k _
D65, 10,6,e2 (331 + 71,562 + k‘2> = (/\1, kz) + Oxe s (T1,22)

for k; € Z. . -
For convenience we will use the following notation: ¢, , = P e An? pdn2 ., 20 - Hereby we
define the diffeomorphism ¢,, on the fundamental sector: On [#, %H x R in case of k € N

and 0<k<n-1

= 2+43+4+...+(3+k—1) 34k — k-(k—1
¢’I’L an_qn ( )»Qn+ (bn 2+3k+ (2 ) 3+k

“dn sdn

Now we extend ¢,, to a diffeomorphism on S! x R using the description ¢, o R1 = R1 0 ¢y,.
an an
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Remark 2.12. Since ¢, ; coincides with the identity outside of A(j-¢) = [j-&,1—j- e]* we
haVe ¢1’L (Dwnv'Yn (Sl X [07 1])) = Dwnv'Yn (Sl X [07 1]) Hence D'L;:,'yn ° ¢n 0 Dwnv'Yn : Sl X [07 1] -

St x [0,1].

3 Convergence of (f,),oy in Diff> (S' x [0,1], u)

In the following we show that the sequence of constructed measure-preserving smooth diffeomor-
phisms f, = H,oR,,  , 0oH; ! converges. For this purpose we need a couple of results concerning
the conjugation maps.

3.1 Properties of the conjugation maps ¢, and H,

In this subsection we want to find estimates on the norms |||H,|||,. For this we have to estimate
the norms of the occurrent maps.

Lemma 3.1. For every k € N it holds

1Dy 3 My et < C - m

where C' is a constant depending on n and k, but is independent of qy,.

Proof. By construction of the map Dy, -, = C. Lo Dy, o C.,,, we have

Dwm’)’n (9,7”) = ((9,7“ + dn : ¢n ('Yn : 9))

as well as
Dy (0:7) = (0,7 = dn - n (30 9))
using the abbreviation d,, :=1 + qi 4+ ..+ ﬁ%.

- k- . n-(n—1)
Since d,, < 2 we obtain: |[|[Dy, 4. [l oy S C - dn -7 <Cogn (24825 ) O

Remark 3.2. In the proof of the following Lemmas we will use the formula of Faa di Bruno
in several variables. It can be found in the paper “A multivariate Faa di Bruno formula with
applications” (JCS96]) for example.

Therefor we introduce an ordering on Ng: For multiindices i = (1, ..., tq) and 7 = (v, ..., vq)
in N¢ we will write ji < 7, if one of the following properties is satisfied:

1 |ji] < |7], where |fi] = S0, i

2. || = V] and p1 < 1y

3. i@ = 7], i =vi for 1 <i<kand ppir <wvger foral <k<d
Additionally we will use these notations:

e For ¥ = (vy,...,v4) € N&:

d
i =]]w!
=1
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e For v = (vy,...,vg) € Nd and 2 = (21, ..., z4) € R%:

Then we get for the composition h (z1,...,2q) = f (g(l) (1, .00y Tq) 5 oery g (:El,...,a:d)) with
sufficiently differentiable functions f : R™ — R, ¢ : R — R and a multiindex 7 € N¢ with

7] = n:
ks
i 9}

Dyh = > Dxf-i: oo ——
s=1 p (7, j ! il

XeNg with 1<|X|<n

w
—
>

Herehy Dy ] denotes (D gV, Dy g and

Ds <17, X) =

{(k;k;ll) e [B] > 0.0 € NGO < B < o <3 = Kand 3

With the aid of these technical results we can prove an estimate on the norms of the map ¢,,:

Lemma 3.3. For every k € N it holds

|||¢n|||k,ezt < C'Vﬁ

where C' is a constant depending on k and n, but is independent of qy,.

Proof. First of all we consider the map <;~S,\’# = &A,e,j,y,é,ez = C;l 0 Pu.5,e5 © Pe,j © Cy introduced
in subsection

. 1
Sr o22) = (5 100 sl o) [0 0 sy (v 22)

Let k € N. We compute for a multiindex @ with 0 < |@| < k:

<Nl 0 pellest and | Da [Bau] <A1l plllent

1 ‘

[ou o]

0,ext ,ex

Therefore we examine the map ,. For any multiindex @ with 0 < |d] < k and v € {1,2}
we obtain: | Dz [wl”]uHOext < 1 |l@esllkext = Crie, - #F71 and in the same way we get
|Pa 0, ], . < Cra " Hences [l < € .

,ex

In the next step we use the formula of Faa di Bruno mentioned in remark [3.2] With it we
compute for any multiindex 7 with |7] = k:

u

Dy [z o]

0,ext u

= > Dilely. Y o

N
XEN%,1S|X|§/€ s=1 Ps(l77x) =1 2' ZZ'>| 1|
0,ext

HDﬁ [(% ° %J)AL

0,ext




Convergence of (fn), oy in Diff*® (S! x [0,1], ) 15

3
m 1 't
¢ e T (P )
=l X Dxledl, X X7 RN
X6N3,1§|X|<k Sy T R () )
,ext
Eit
k s H:L HDE W;l]t)
< ¥ bl o T
- S o . €J 0,ext -1 —. 1 N N |k:l‘
Xenz,1<|X|<k s=1 p (7X) ¢ k! - (li!)
: [l
S SE AN WD D B | E
T R ALY 0,ext a o ki
XEN2 with 1<|X|<k s=1 p,(7.X) =1 E.l. (lll)
i
i - ‘ e
= X |l X X I
XeNg with 1<|X|<k =1 p.(7.X) =1 kL. (l )
_1lFi 5l pl® |E;
As seen above: \|\7,ZJM1||||E_|7ext < . Hereby: Hf:1||\wul|\| < C-px

|l |ext -

where (' is independent of . By definition of the set p; (17, X) we have Zi:l | -1; = U. Hence:
2 s 2 s

> (o[ 5) - (HOSAES oI
1=1 ¢ t=1 i=1

t=1
C - p¥ and finally HD [ Yo @e ;) 1} < C-pF. Anal-
—1

—

k=|V= |l

)

This shows [[._, |||¢;1|||

‘l‘et_

u 110,ext

ogously we compute ||D,7 [ © Qe j UHOext < C - |1Yulllkext < C - pF=1. Altogether we obtain

119 0 Pejlllkext < C - p*. Hereby we estimate HDE {QEA,#}

HD&' |:¢;\Li| u 110,ext

In the setting of our explicit construction of the map ¢,, in section 2.5 we have € = g, €5 = &=

3 b
243 (n—1)+{n=t(n=2)
Amaz =N Qn 2 and fyer = qn+” L Thus:

< C-Mf. p¥ and analogously

ul10,ext
< C - M. pk. In conclusion this yields |||dxul|k.ext < C - u¥ - AF.

% 243-(n—1)4 2= (0=2) g 3tn_1\k
|||¢nmk,ext§0(k7n)' n - gn (‘Jn )
where C (k,n) is a constant independent of ¢,. O

Combining the last results with the aid of the formula of Faa di Bruno yields

Lemma 3.4. For every k € N we have:

-1 3k
H’Dwnv'}’n °© ¢n °© D"Z"nf}’n ‘k S C ) ’Yn

where C' is a constant depending on k and n, but is independent of q,,.

In the next step we consider the map h,, = g, 0 D;ﬂl o © ¢n oDy, ~,, where g, is constructed
in section 2.4
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Lemma 3.5. For every k € N we have:
Whnlll, < C-qf A"

where C' is a constant depending on k and n, but is independent of qy,.

Proof. We label ¢, == D! 0 ¢y 0 Dy, -, Outside of S! x [6,1 — 5]™ " we have:

hn (21, 22) = gn © $n (21, 22)
= ([d_)n (9017&52)]1 + Xn (22) - [n-qp"] - [an (551,%2)]27 [571 (551,962)]2)

and
hot (21, 29) = ¢, 0 g, (21, 12)
= ([¢n" (21 = Xn (@2) - [~ q7"] - w2, 22)] |, [P (21 — X (w2) - [0+ g7 - @2, 22)],)

Since 0, < 1 we can estimate:

k I ~ .
1Anlllk <2+ Cre - [n-a7")" - lldullle < Ca7n ™ - ™ < C g -

with a constant C' independent of g,,.

In the other case we have
gn © an (xla $2) = ([ga,b,e ([én] 1 [Q_Sn] 2)} 1 (!El, $2) » [ga,b,s ([an] 10 [&n]Q)]Q (1'1» xZ))

We will use the formula of Faa di Bruno as above for any multiindex 7 with |7] = k and obtain
for u € {1,2}:

15 [9n 0 3],y = 105 [gmc 0 ],
A

k
> IPsbes- o X AT %
s=1 p (7.X) J=1 k;! ( )

XeNZ with 1<|X|<k
By Lemma [3.4) we have |||é,]|[r < C- 72# where C is a constant independent of g,,. As above
0% . .
we show [[5_, |||<;Sn|||| | <C- 7( il Rsl) 3 = C - 4*3 where C is a constant independent of

|55
Qn-
Furthermore we examine the map gq . for a,b € Z:

IN

1 b- b-
9(1_,117,5 (z1,22) = (a' l91], (a'xl’ga '332) 7% 9], (a'“jl’sa x2>>

Thus: |||ga.p.elllx < ( ) Q [lge|||x = Cex - b* - a*~1. By our constructions in sectionwe
have b=[n-¢2"] <n-q¢2", a < ~vn and € = 16n? - €,,. Hence:

gnlllk < Coge g™ AN < Cope -l -1
||| ||| <C on-k k1<C kl
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Finally we conclude: || Dy [gy, o bnl, H <C(n k) koyk=l. 3k < CO(n, k) - qF 42k,
In the next step we consider the inverse ¢~ 1 og,

ont Ogabs(l“lv@)

( ([9;@,5} ) (z1,72), [QQi,e}l ($1»$2)> ety ({g;é,g} ) (w1, 22), [g;iﬁ}l (551,%2)))

For w € {1,2} and any multiindex 7 with || = k we obtain using the formula of Faa di Bruno
again:

. % |
1 1 - s |||gn||||f|
||D17 [¢n °9n ]u“oS Z HDX [d)n ]uHo'Z Z v ~ B
XeNZ with 1<|X|<k s=1 p(7.X) 7=1 k! (l l)
As above we show [[7_, ||| gn\HIqJ” < C-¢" -~k where C is a constant independent of ¢,. Since
lonllls < C- 77" we get
D5 (65 0gn ] ll, SC-ah Ak A3k < C- gl yn*

where C' is a constant independent of g;,.
Thus we obtain finally |||g, © ¢nl||rx < C(n, k) - g~ - 2. O

Finally we are able to prove an estimate on the norms of the map H,,:

Lemma 3.6. For every k € N we get:
|||H H‘k < C qk4n (n+5)

where C' is a constant depending solely on k, n and H,_,. Since H,_; is independent of g, in
particular, the same is true for C.

(n—1)-n o (n+5)

Proof. By Lemma and v, =n - q2+3n+ 2 =n-q we have

ke (144-2+44. 00450

[[nllle < C - an < C. it D)

Let k € N, u € {1,2} and 7 € N3 be a multiindex with || = k. As above we estimate:

||Dl7 [Hn]u”() = ||D17 [Hn—l © hﬂ]u”()
5|

el m‘f|

DI ENTARNNS ol S |

XeNZ with 1<|X|<k s=1 p.(7,X) =1 jl (l 1) ]|

IN

i
and compute using Lemma H§=1 |||h"|||}f]|| <C. k 4n(nt+5)  Gince H,_, was constructed

lullg < C-q ko (n+5) , where C' is a constant indepen-

independently of ¢, we conclude: || Dy [H,
dent of q,.

In the same way we prove an analogous estimate on HD,; [H; 1} uH 0 and verify the claim. O
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3.2 Proof of convergence

In [Kun13a], Lemma 5.8., we proved that under some assumptions on the sequence (), oy the
sequence (fy), oy converges to f € A, in the Diff> (M)-topology.

Lemma 3.7. Let ¢ > 0 be arbitrary and (kn), oy be a strictly increasing sequence of natural
numbers satisfying > -, 1% < €. For each k,, € N there is a constant Cy, > 1 determined by
[Kuni3a], Lemma 5.7.. Furthermore we assume that in our constructions the following conditions

are fulfilled:

o —aq| <e and o — | <

1
< T or every n € N.
2 O T ' Y

kn+1

1. Then the sequence of diffeomorphisms fp, = H, 0 R, © H. ' converges in the Diff>*(M)-
topology to a measure-preserving smooth diffeomorphism f, for which d (f, Ry) < 3 - €
holds.

2. Also the sequence of diffeomorphisms fn = Hy,, 0 Ry o H:' € Ay (M) converges to f in the
Diff*° (M)-topology. Hence f € A,.

Next we show that we can satisfy the conditions from Lemma in our constructions:

Lemma 3.8. Let (ky),cy be a strictly increasing seq. of natural numbers with PO 1% < o0

and Cy,, be the constants from Lemma[3.7. For any Liowvillean number « there exists a sequence
a, = p—n of rational numbers with i divides g, and ¢, > max;=1 . n+1L; (where L; denotes
the Lipschitz constant of p; € Z), such that our conjugation maps H,, constructed in section
fulfil the following conditions:

1. For every n € N:
1

o
2k - Cr, - | Halll5 41

a— oyl <

2. For every n € N:
1

a— Ol <
o= el < S T

Proof. In Lemma we deduced the estimate |||H,|||x,+1 < Ch - g A (H0) here the

constant é’n was independent of ¢,. Thus we can choose ¢, > C’n for every n € N. Hence we ob-

tain: ||| Haulllk,+1 < gttt Begides g, > €, we set the conditions g, > n'® -qgf(l"_l)ﬂ
2(2+43:(n—1)+ 2= (n=2))

and ¢, > i - 12 5"1,1 Mon=1lll; - @21 . Furthermore we can demand

Gn > MaX;—1,..n+1 L. Since a is a Liouvillean number we find a sequence of rational numbers

a, = ;ﬁ—:, Dn, Gn relatively prime, converging to o under the above restrictions (formulated for
Gn) satisfying:

~ 1480 (n+5)- (kn+1)*
la —a,| = |a Pni la —ap_1|-en e :
— n| = — 2
Gn o+l k- G Cghrs () (ka+1)
Put ¢, = ? and p, = ’2—" Then we obtain:
O — p—1
la — | < | nil

on+l . Ck7 . q}t+8‘7l'("+5)'(kn+1)2 .
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2
Batl o S (ns) (a1 i

Thus we have | — ap| "= 0 monotonically. Because of ||[Hyl||[;"T7 < gn

1 . .
. Thus the first ty of this L fulfilled.
27 g o G, AT us the first property of this Lemma is fulfille

Furthermore we note k,, > 1 and C,, > 1 by the assumption in Lemma@ Thus g, kpn-Ck,, > gn.-
Moreover |||Hy||l1 > ||Hyull, = 1, because H,, : S'x[0,1]" " — $'x[0,1]™ " is a diffeomorphism.
Altogether we conclude 2"+ - g, - ky, - Cr., - ||| Hyl| Zﬁ > 2t g, - |||Hy|||1 and so:

yields: |a — ay| <

1 1

< :
20+l gy k- oy - || Hl|[f 2] 2770 g [[[Hal[]y

(1) o — a| <

i.e. we verified the second property. O

Remark 3.9. Lemma [3.8 shows that the conditions of Lemma [3.7] are satisfied. Therefore our
sequence of constructed diffeomorphisms f,, converges in the Diff** (M )-topology to a diffeomor-
phism f € Ay (M).
Remark 3.10. In particular |||H,[||; < ao™ ") motivates our definition of the number r(n) =
8-n-(n+5).

As in [Kunl3al], Lemma 5.11., we can conclude:

Lemma 3.11. Let (ay,)
for every m < qpy1:

nen be constructed as in Lemma . Then it holds for every n € N and

4-r(n—1)

Remark 3.12. We determine the parameter o,, € (0,1) in such a way that ¢2" = ¢, , l.e.

we have [ng?"] =n- 7",

4 The invariant measures

As above p is the Lebesgue measure on S! x [0, 1] and 6° (resp. §') denotes the Lebesgue measure
on the boundary component St x {0} (resp. S! x {1}). We aim for showing that these are the
only ergodic f-invariant measures. Therefore we deduce a statement on the Birkhoff sums for
arbitrary = € S* x [0,1] (see Lemma [4.3). In order to prove such a statement we have to gain
control over a large proportion of every R;-orbit. This is done with the aid of the trapping maps
and regions.

Furthermore A denotes the Lebesgue measure on S! and X the Lebesgue measure on [0,1].

4.1 Trapping property
Incaseof 0<1<¢q,—1,0<k<n-1, ji(l) €7, |—18n2£n ~qn-| < ji(l) < Qn— [187125” ~qn] -1

for i = 1,2 as well as jét) €72,0< jét) < gn — 1 for t = 2,3 we introduce the sets

A D @
Lk, 580 55 58

IR S L N L R

dn qn qn  dn qn

I k TN k D11
+ + J1 74_]1 +

a0 ; a2’ q. ; P
dn n-qgn n-q, dn n-qgn n-qy
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Note that there are ¢, - n - (qn -2 {18n25n . anZ . q% such sets Al,k,j}”,jé”,jé

the union of these sets by 7% and the collection of these sets by Ti"*. Then

2) @) We denote
J2

. 1 1\> 1
pE < OANTE) =1=n-a,- (g, = 2 15 ) gt e <1 (122 ) <o

Note that D'~ (Aw . Jég)) C ' x [1202 - £,,1 — 12n% - ¢,]. Unfortunately g, = §pqon]

VERRETED n

is not necessarily true on D,;l - <Al ki) j(3>), but this set is strictly contained in a cube of
nsYn 2% E RV DY
1

g T 4n? - e, < 8n? - g, that is an union of domains of g, ;... Then we obtain

sidelength

diam (Hn—l ogn (D;jﬁn (Al,k,jil),jél),jf),jéa))>) < HDHn—IHO n- qun . \[2 8n2 . En
V2

- 4-r(n—1) 3
S q;(_nl 1) . qn_l . 8” .
Lot go D
4
nd - gn—1

by the construction of the number o,, in Remark
By the requirements on the number ¢,, in Lemma [3.8 we obtain

pi (Hn—l o gn © D;iﬁn (ZE‘)) - pz (Hn—l o gn© D'L;j,'yn (y)) ’

<Lip (p;) - diam (Hn—l ° gn (D;17 (Alﬁk’jg)Jél)’j;z)’jés))))
4 4

1 g =5
ns - dn—1 n8

for every z,y € Al PIORTOINONIC) and the function p; € Z in case of i =1, ..., n.
yhsd1 ado sJ2  ad2

Remark 4.1. Since we need this expression to converge to 0 as n — oo this explains our choice
of g,.

Averaging over all y € A, , 1) .(1) .2) .3y We obtain:
l,k,jl sJo Tsd2 Tsd2
(2)

1 4

—1

pi (Hu-10gno Dyl (@) = / pidp| < —
M(Al,k,'(l) (1) .(2) ,(3)) anlogn(Alwkd_gl)‘jél))jé2)1]é3))

J1 "sJ2 Thdo Tsda

(1 Fd
-,k7J§ ) 2

Furthermore we calculate that the trapping region D;ﬂl . (Slint ) defined in section is
mapped under ¢, o Dy, -, onto
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) 3k+k(k 1)
U LI i + i + ..+ tg 41 —~ ) -
wtnathnEgtna n'qi+3+4+..i+(3+k—1) n.qrzl+3+4+i..+(3+k—1)+1
3 B (E=D) 3 (n_1) =D
(3+k)+1 tg =D 1) tg (n—1)+23=D k) 1
0. q2L+3+4+ +EHR=D+3+k T qi+3+"‘+(3+k71)+(3+k)+1 +ot Y + ntq,
3 (n—1)+ 2= _p
dn n-dn Tn Tn
1 3+k (1 3+k
AL L e L Eer e
ST ey i W o +. Tt 31k 31k

where the union is taken over all tél) €7,0< tg) <gq,—1,forl=2,..,3+k as well as tél) €7,
[(4n2 + 1) En - qn1 < tél) < gn — {(4n2 + 1) En -qn] — 1 as well as tgj) €Z,0< tgj) < gqn — 1, for

FALRCESS! P RCESS!
st +1) satisfying [e,, - ¢n | < tg?) =)

<

j=1,.., 3-(n—1)+w—kz apart from tg
dn — |—5n ° Cb[l -1
In particular ¢, o Dy, ~, (D;nm (Sl ey ﬂ>) is contained in Al,k7j§1>j§1>7j§2>7j§3>. The same

1 J2

is true for the other allowed values of j( ), . ]§3+k). Thus there are ¢* trapping regions, that

are mapped into Al kgD D @) ) under ¢, o Dy, ~,.. Hence we can estimate the number of
sRJ1 edo o sde

i € {0,...,qn+1 — 1} such that ¢, o Dy, -, o R, (x ) is contained in A, ) ;o) @ @ by
waJ1 J2 0J2 J2

Q1
k. ._n -3 12 A
qr - wint(:p) Q41 - P S wmt( ) “Qna1 (1 — 772) L ( l,k,jil),jél),jf),jém) from below and

by @ (%) - gni1 - 1 (Al oD G0 G j(”) from above for arbitrary = € S' x [0, 1] using Remark
2 WJ2 W2

23

Let # € S' x [0,1] be arbitrary. We denote the set of iterates j € {0,...,gn+1 — 1} such that

¢n © Dy, ~, o R, .1 () is contained in A € Tint by In. With the aid of equation [2| we obtain:

1
> 01 (Har0900 D) 0000 Dy, 0B, (@) = h(a) - [ pid
dnt1 STy Hp_10gn(A)

4 A) 12
< “8( )+7-/ |pil dp
n n Hy,_10g,(A)

Furthermore, we examine the trapping regions in the neighbourhoods of the boundaries. For
l=0,1,...,9,—1,k=0,1,...,n—1 and [187125” . qn] < j;l) < @n— (18n25n . qn] —1 we introduce
the sets

I k TON k i1
0 [ J1 + x [0,4-n* &)

o=+ »
lk] dn n-qn n- Q% dn n-qn n- qn

and

i x[1-8- n?- e, 1].

I k TN [ SN |
! [ 4N S ——— 4 L2 -
dn n-qn n- qn dn n-qn n- qn
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Again Tfl denotes the collection of these sets A; e in case of t = 0,1 as well as Ipo and Ia:
3R J1

respectively label the set of iterates such that Dy, ., o R}, i1 () is contained in At € Tt for

t = 0 and accordingly ¢t = 1.

We observe that for t = 0,1 the map H,_1 o g, acts as the identity on these sets Af (D and
PV EY

diam (Af . ,(1)> <16 -n?-¢,. Then we conclude for s = 1,...,n and z,y € Af D
LAV EY ILZVEY

. . 4 1
(3) |pi (Hn—10gn (2)) = pi (Hn—1 0 gn (y))| < Lip (p;) - diam (Az kJ“)) < 5o <8
/1 ng . q

qn n-qn n.gz’

(1)
In particular this holds true for y = (l + -k 44 t). We consider such points (#,t)

foru:O,...,anl — 1 and calculate for z € {n?ff 2n1q2, nqZ an ]
n

Uu 1 1
i )] —pi((2,8 Lip (p;) -
p <(nq% )> pi (2 ))‘< ip (p:) Sl g

i w1 _u _1
Averaging over all z € [niq% T g T

z'Pi( 27t)_/ pido'| < n-g2

+
n-q,,% 24n,~q72L7n-q$L 2-nvq72L

Summing over all u = 0,...,ng2 — 1 gives

p el 1
u
. E i 7,t — Zd5t <
n-q; p<n~q% ) /31/) n-qn

u=0

The set of u € {O ,ng2 — 1} such that ( T ,t) is contained in one of the blocks A S € T

171

is denoted by U!. Since there are at least g, - (qn -2 [187125” . q,J) (1 — —) n - g2 such
blocks there are at most [ - n - ¢2 | numbers u € {0,...,ng2 — 1} outside of U},. Hereby we get

> X pi(HioR,, (@ ))—wf(m)-/glpi(e,t)dat

n+1 Atett J€lns

nq2—1
1 = u
< S pi(HaoRL L, @) - =@ D p (t)
n+1 AteTt JEIAt [ C—— " dn
1 nqi—l
u
+wy(z) | — - p4< ,t) —/ pi dé*
! nQ% 1;) ' n- qn St '

1 wi(x) u 1
<Y | S (ol @) - ZH () L+

weut | Int1 j€lnt n n
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Under the map H, (qn -2 [187126” - qnw ) -@2T* trapping regions D;17 (Sltk ey fz) are mapped
ssJ1 s

into one such A;k - Thus for arbitrary z € St x [0,1] the set A;k 1y captures at least
LAV EY »RyJ1

P (@) g (1 — 233)- n~1q,2; and at most @} () gnt1- ﬁ iterates D;:’,Yn 000Dy, ~. ORZvnH (x)

by Remark [2.3] Then we can estimate with the aid of equation [3]

LSy (Huo R, @) - Neilly

2 .8 2 2
Int1 57 n-g2 n® n? n-g¢
Au

=t |

2 t) _wie) 11w @)

27

In continuation of the above estimate we conclude

LS Y o (Heo B, @) i) /S i (6.0 dd"

D4l \ieFr jeln
1 14 1 1 15 2
Ssst s lpillo + O lpillo + ——. S 3 lpillo + o

Using this preparatory work we can prove the following result on the Birkhoff sums:

Lemma 4.2. Let p; € = and i = 1,...,n. Then for everyy € M = S* x [0, 1] we have

qn+1—1 60
inf i 7jl —/ i dE™ | < — - ||ps
At | — g pi (L) = [ pedg™| < 5 llilo

where © is the simplex generated by {u, 69, 51}.

Proof. Let z € S! x [0,1] be arbitrary. We introduce the measure

€=l (@)t (@) 0+ () O € O,

x

The set of numbers k € {0, 1, ...,¢n+1 — 1} such that the iterates R’;W

one of the trapping regions is denoted by I,. Referred to Remark there are at most % “Qn+1
numbers in I,. We obtain ‘Zjela Di (Hn oRl ., (J)))‘ <\lpillo - 23 - gnya-

() are not contained in
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Hereby we obtain:

1 qn+1—1 .
> o (Hao R, @) =@ [ pdi-w@) [ pdi -t [ pas
An+1 =0 M st st

Z Z Pi <H ORénH( )> _wiﬁlt(x)'/Mpidﬂ

A]nt €T1nt JEI Nint

— Y Y a(thoR,, @) =@ [ w60

AoeTU J€lro0

+ Z > pi (H oRl ., (x )) *W?(x%/y pi (0,1)ds"

AleTl JEIA1

4|2 S o (H oRzXW())

Int1 joT

412 o 15 2\ 14 60
<ot leillo (MAT) lpillo +2- (ng lpillo + ng) + o5 leillo < -5 - lleillo

With 2 = H,,; ! (y) we obtain the statement of the Lemma. O

We point out that the measure & used in the above proof was dependent on the point x, but
independent of the function p € =.

Lemma 4.3. For every p € = and y € S* x [0, 1] we have

gn4+1—1

S op(f* (y))—/pd£”

k=0

ginf@ —0 asn— o
ne

dn+1

where © is the simplex generated by {u, 69, 51}.
Proof. By Lemma we have

A0 g = e (1) "0

1=0,1,...,qn4+1—1

Then for every p € E we have |p (f (z)) — p (f (z))] "= 0 uniformly for i = 0,1, ..., gn41 — 1,
because every continuous function on the compact space S! x [0, 1] is uniformly continuous . Thus

we get: || =S5 p (i (2)) — A TG T (Sl (@ H = 0. Applying the previous
Lemma we obtain the claim. O

Since the family = is dense in C (S! x [0,1],R) the convergence holds for every continuous
function by an approximation argument.
Now we can prove that the measures p, 8%, 5! are the only possible ergodic ones: Assume that
there is another ergodic invariant probability measure {. By the Birkhoff Ergodic Theorem we
have for every p € C (Sl x [0,1] ,R):

n—1

nh_{%O % Z p (fk (z)) = / pd¢  for E-ae. €St x[0,1]

k=0 §1x[0,1]
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With the aid of Lemma we obtain for every p € C (S' x [0,1],R) and z in a set of &full

measure:

n—1 qnir1—1
1 1
pdé = lim — g p(f*(z)) = lim g p(f*(z)) = lim pdg",
/Slx[o,u noeen (@) noo ntl T (7)) o0 Jsix0,1]

where £ is in the simplex generated by { i, 69, 61}. As noted this measure does not depend on the
function p. Thus we have for every p € C (S' x [0,1],R): lim, oo fslx[o,l] pd&" = [o «[0.1] P dé-
Since the simplex generated by { w, 0%, 6 1} is weakly closed this implies that £ is in this simplex.
We recall that ergodic measures are the extreme points in the set of invariant Borel probability
measures (see [Wa75], Theorem 5.15.). Then ¢ has to be one of the measures {y,8°,6} and we
obtain a contradiction.

4.2 Weak mixing with respect to Lebesgue measure on S' x [0, 1]

We introduce the central notion in the proof of the weak mixing-property:

Definition 4.4. Let ® : S* x [0,1] — S' x [0,1] be a diffeomorphism and .J be an interval in
[0,1]. We say that an element I of a partial partition is (7, €)-distributed on J under ®, if the
following properties are satisfied:

e [c,c+7] ng@(f) C [e,c+ 7] x [0,1] for some ¢ € St and 7 < 7y

e For every interval J C J it holds:

Remark 4.5. Analogous to [F'S05] we will call the second property “almost uniform distribution”
of I on J. In the following we will often write it in the form

(100 (550) (1) ()] <eon(1) 4 ()

In the next step we define the sequence of natural numbers (1m,,),,c:

dn+1 n-gn qn

m. Pntl _ 1 +k <1}
En41 " dn+1

< Gn }
En+l *Qn+1

< qdn
— En+1'qn+1

m, = min {m <gnt1 : meN, inf
keZ

. 1
RS SR S

= min{m <gn+1 : meN, inf
dn+1 n

keZ

Lemma 4.6. The set M,, := {m <gni1 : meN, infrey ’m- ‘:‘!nq'i’%ﬂ _ % +k

is non-empty for every n € N, i.e. m,, exists.

Proof. In Lemma we constructed the sequence o, = % in such a way that ¢, = Ei ~(n

. 4nPn+1

dn+1
% different equally distributed points on S'. Hence there are at least

different such points and so for every z € S! there is a j € {1,...,¢,+1}, such that

: ]: 172a"'7qn+1}

En+1°9dn+1
an

and p, = gi - Pn, With py,, ¢, relatively prime. Therefore the set { J

contains

an

. dn * Pn+1
En+1 " Adn+1

dn+1

inf |2 — 4
kEZ J

+k’<

In particular this is true for z = & O

pg
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Remark 4.7. We define

1 1
ay, = (mn 1 ) mod —
dn+1 - dn qn

By the above construction of m,, it holds: |a,| < ﬁ. In the proof of Lemma W we set
the condition g,41 > Enlﬂ <12 i Nnlll; - ¥2. Thus we get:
En
lan| < o=
12 el -7

Our constructions are done in such a way that the following property is satisfied:

Lemma 4.8. We consider the interval J = [25712 en, 1 —25n2. sn} as well as the diffeomor-

phism ®,, = D;:)% 0 ¢y 0 Dy, 1, 0 RG™ D;jﬁn o ¢, with the conjugating map ¢, defined in
section . Then the elements of the partition n, are (n-{ﬂ , %) -distributed on J under ®,,.

In order to prove the weak mixing property we modify the proof from [Kunl3b], section 5.
We recall the following approximation statement ([Kunl3b], Lemma 5.2):

Lemma 4.9. Let f = lim,_. fn be a diffeomorphism obtained by the constructions in the
preceding sections and (my), cy be a sequence of natural numbers fulfilling do (f™", f') < %
Furthermore let (1), be a sequence of partial partitions, where v, — € and for everyn € N vy,
is the image of a partial partition 1, under a measure-preserving diffeomorphism Fy,, satisfying
the following property: For every cube A C S' x (0,1) and for every e € (0, 1] there exists N € N
such that for every n > N we have for every I',, € v,

(4) [ (T N ™ (A)) = (Tn) - (A)] S € p(Tn) - (A)
Then f is weak mizing.

In our case we will use the subsequent sequence of partial partitions and we will need that it
converges to the decomposition into points.
Lemma 4.10. Consider the sequence of partial partitions (n,),cy constructed in section|2.3.1|
Furthermore, let (Hy), oy be a sequence of measure-preserving smooth diffeomorphisms satisfying
|IDH, 1] < % for every n € N and define the partial partitions

Vp = {F,L =H, 10gp0 D;iﬁn (fn> I, € 17”}
Then we get v, — €.
Proof. Since the trapping map D;jml causes a r-translation by at most 4n? - &, we have
D;i% (fn) C St x [12n? - &,,1 —12n% - &,] due to the choice of jél).

After the application of D;i,% on fn € 1, the diameter is at most NOE (% + 4n? -sn) <

2-+/2 - 4n%e,. Unfortunately, on this set g, = Ginggn] 1s not necessarily true, but it is strictly
contained in such a cube of sidelength 2- V2-4n2%¢,, that is a union of domains of Jap,e- Under the

above assumption ¢, > n'? - qﬁ‘f({"l)“ we obtain for the diameter of such a partition element:
diam (Hn_l ogpo D;:,% (fn)) <|DHu-1lly - [ngy"]-2- V2 4n? e,
_ r(n— 2-4/2
qu(jlll)'n'q4r(n 1)'—\[ —0

n—1 5-r(n—1)+1
n9 : qnfl
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as n — oo. Thus this sequence of partial partitions converges to the decomposition into points.

O
As a technical result needed in the proof of Lemma we state [Kunl3b], Lemma 5.4.:
Lemma 4.11. Given an interval on the r-azis of the form K = Jycy . <p<i, [%, (k;r_i)'s},

where ki, ks € Z with b'Ta 0 <k <k < b'Ta — bTa -0 —1. K.~ denotes the cuboid [c,c+~] x K
for some v > 0. We consider the diffeomorphism gq . constructed in subsection and an
interval L = [ly,1s] of St satisfying X (L) > 4 - 1%35 — .

Ifb- M(K) > 2. then for the set Q := 7z (ch, ﬂg;}),g (L x K x Z)) we have:

1 2e 1—2¢
MK 8-
(K)+8 ——

Lemma 4.12. Let n > 5. For the number m,, as above we consider

®n =Dy 0640Dy,, oRY 0Dyl 0p,!
and J = [25712 en, 1 —25n2 ~5n].
Then for every cube S of side length q,°" lying in S' x J we get

(5) (et o gr () A (1) ()] < 2 (1) - 1(9)

Proof. Let S be a cube with sidelength g, °» lying in St x J. Furthermore we denote Sy = 7y (S)
and S, =, (S). Obviously: A (Sg) =X (S,) = ¢, and X (Sp) - A (S,) = u(S) = q;,;%°".

According to Lemma ®, ﬁ)—distributes the partition element I, € N on J, in par-

nqza

ticular @, (In) C [e,e+9] x [0,1] for some ¢ € St and some v < —5 q . Furthermore we saw in

the proof of Lemma that ¢, 0 Dy, . o R™ oDy'  op-! ( n) is contained in the interior

Qn41 Yn,Yn
of the step-by-step domains of the map g,, and on its boundary g, = gj,45») holds. Particularly
1-2¢

it follows v > in case of g, = gape. Forl e Z, 0 <1 < b'?“ — 1 we introduce the sets

A = {%, (ltal)e} and with these we consider

UAl aswellas S:=Syx8,CS
2N CS,.

Using the triangle inequality we obtain
(10 (9,18))) - AW) = (1) - 1(9)] < [ (T @ (9,18))) = (Tn @ (02 (5)))] - A ()
+lu(Tner (o (5))) 2@ = (D) (8)] +4 (1) - |u(5) -u5)

Here ‘,u (5’) - ,u(S)‘ =pu (S\S’) < 2-%&(59) <2-2-u(S), where we used b = [n - ¢7"| > g7n
in case of n > 4. Since ®,, and g,, are measure-preserving we obtain additionally:

i (fne; (6:19) —n(Fne;* (9.0 (9)))| <m(5\8) <22 u(s)
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In the proof of Lemmawe observed (<I>n (f)) >1.(1-521) - A(J). Hence:

‘u (fﬂ‘I’El (9;1(5))) —u(fﬂq);l (9;1 (5‘)))‘ A
<2 u(8) (@ (1)) <42 u(8) - (@n (1)) =4-2-10(8)- (1)
26m4

Thus we obtain:

i (e (:19)) A () = e (1) - u(8)]

< (1082 5 () A0 -1 () (9)] 452 05111

Next, we want to estimate the first summand. By construction of the map g, = g, and the
definition of S it holds: ®, (f) Ng,! (5) C [e,c4+ 7] x S, =t K. . Considering the proof of
Lemma 4.8 again, we obtain g, (K¢ ) = Jjnggn] (Kc) (since ¢ and ¢+ are in the domain where
gn = g[nqgn] hOldb) ~
Because of Lemma 2y < 2 < q,°" for n > 2. So we can define a cuboid S; C §, where

n-q2

(6)

Sy =[s1+7,82 —7] X S, using the notation Sy = [s1, 82]. We examine the two sets
Q =Ty (Kc,'y N 9771 (Se X gr)) Ql =Ty (Kc,"/ mgrjl ([81 +’7782 - ’7] X Sr))

As seen above ®,, (f) Ng,t (S) C K. Hence @, (f) Ng,? (5) Cc o, (f) Ng,* (S) NKe,
which implies ®,, (f) Ng,t (S) c o, (f) N(S'x Q).

Claim: On the other hand: ®,, (f) N (Sl X Ql) c o, (f) Ng;t (5')

Proof of the claim: For (0,r) € &, (f) N (S x Q1) arbitrary it holds (6,r) € @, (f),
ie. 0 € [e,c+7], and r € 7, (Kcﬁ Ng,* ([51 + 7,82 — 7] x S.)), ie. in particular r € S,.
This implies the existence of 6 € [c, ¢ + 4] satisfying (5, r) € K., Ng,"'(S1). Hence there are
B € [s1+7,50—~] and r; € S, such that g, (0_,7*) = (B,r1). Because of € [c,c+~] and
r € S, the point (6,7) is contained in one cuboid of the form A, .. Since 6 € [c,c+7] (6,r) is

contained in the same A, .. Thus 7, (g, (6,7)) € S,.. Furthermore gn (0,7) and g, (9, 7“) are in
a distance of at most « on the f-axis, because 0,0 € [c,c + 7], gn (Kc ) = Jnggn] (Kc,y) and the

map §jnqon] preserves the distances on the f-axis. Thus there are B € [s1,52] and ro € S, such

that g, (6,7) = (B,72). So (6,r) € ¥, (f) Ng,*! (5‘) O
Altogether the following inclusions are true:

3, (1) N(S' x Q1) C @, (I) ng7! (5) co, (I) N (s x Q)

Thus we obtain:

(1) Smax(,u(fﬂ@;l(Sle)).)\(J)—M<IA)-M<§)),
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We want to apply Lemma for K = S,, L =Sy and b = [n- 2] (note that the requirements
4.1=22 5y <3 122 < 7w =A(L) and b- A(K) = [ng;"] - ¢, 7" = inggr - qp°m > 2 forn >4
are fulfilled):

M@ - u ()]

2 < 2y = 1—-2e /5 1—2e
< . _ar A(S,) +4- . )
g A(Se)Jr[n.qgn]Jr'y (S)+ - A(S)+8 ot

4 ~ 4 1 1-2 16-(1 -2
SRR V8 L N SV 7 S W P R Y7 A WL G |
nqn nqn .qn nqn nqn nqn .n.qn
14
< .
< e (S)

In particular we receive from this estimate: 4. 4 (S) > A(Q) — p (S) > A(Q) — 1 (S), hence:

AMQ) < (1+37) - u(S) <4-pu(9).
Analogously we obtain: A (Q1) <4 - u(S5).
11

Since @ as well as (1 are a finite union of disjoint intervals contained in J and ®,, (W’ E)'

distributes the interval I on J we get:
i (Ine; (8" x Q) - A() —u (1) 2@ =
as well as
i(Pnes (8% Q) AW i (1) A @n| < ou(T) A @) <
Now we can proceed
’u(fmcbgl (8" % Q) - A() - (1) ~u(5)’
<|u(fne; (8" x Q) - AW —u (1) A@|+u (1) )@ - (3)]
< Lo (0) us) (D)2 (s = 2 (1) u(s)

Noting that u (S1) = p (5) —27- A (S’T) and so (5’) —p(S1) <2- .1gn A (5’,«) < % - (S)
we obtain in the same way as above:

‘u(fﬂ‘bﬁl (Sl><Q1)) -/\(J)—u(f) M(S)‘ <

Using equation [7] this yields:

(002t (9) 201 (1) (5) <22 (0) w05

1.

8nt "

=18

Finally we conclude with the aid of equation |§| because of € =

(10 (9,18))) AW = (1) - w(9)] < = (1) - u(8)
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Now we are able to prove the aimed weak mixing property:

Proposition 4.13. Let f,, = H, o R, ,, o H,' and the sequence (Mn), ey be constructed as

above. Suppose additionally that do (f™, fi') < 5= for every n € N, |DH,_1||, < m(an) and
that the limit f = lim,, . f, exists.

Then f is weak mixing.

Proof. To apply Lemma 4.9 we consider the partial partitions v, == H,_10g, 0o D ¢: o ().
As proven in Lemma @ ese partial partitions satisfy v, — . We have to establish equation
For it let ¢ > 0 and a cube A C S' x (0,1) be given. There exists N € N such that
ACS!x [25712 -gp, 1 —25n2 . En] for every n > N. Because of Lemma we obtain for every
I, € Nt Py (fn) D le,c+79] x [25n2 €n,1—25n2 'sn] for some v < nilqz. Furthermore, we
note f'r?% =H,o R&nn+1 o H;1 =Hp 10gp,0®,0 len,’Yn o 9771 ° H;—ll

Let S, be a cube of sidelength ¢, °» contained in S' x [25n2 - gp, 1 — 2502 -sn] =S!' xJ. We
look at Cy, == Hp,—1 (Sp), I'n € vy, and compute (since g, and H,,_; are measure-preserving):

| (Fn N fy ™ (Cn)) = (Tp) - (Cr)| = ‘u (fn ne,tog,* (Sn)) — (In) - (Sn)

+1)\(>:7()J)':U(fn) -1 (Sn)

< sy (nn et o g (0) AW =g (B) e (50)

Since A (J) >

1 and so: L ()‘}3]) <2-(1-A(J)) < 2. We continue by applying Lemma m

1 (O £ () = (T i (€ <20 2 (B) (S + e (1) e (52)

Moreover, it holds diam(C,,) < ||DH,_1]|, - diam (S,) < PRI R 2
q

an nl n—1
ie. diam(C,) — 0 as n — oo. Thus we can approximate A by a countable disjoint union
of sets C,, = H,,_1(S,) with S,, C S* x [25112 - &p, 1 — 2502 ~5n] a cube of sidelength ¢, 7" in
given precision, when n is chosen big enough Consequently for n sufficiently large there are
sets A; = UiEE}, Ci and Ay = UzGEZ C! with countable sets X1 and 32 of indices satisfying
A} CAC A, as well as [pu(A) — u(A )|<€~ w(A) fori=1,2.
Additionally we choose n such that 44 < 5 holds. It follows:

(D 0177 (A)) = o (D) < g (4)
<p (T N f™ (A2)) = w(Tn) - o (A2) + 1 (Tn) - (1 (A2) — 1 (4))
<D0 (P £ (CR) = i () -1 (i) + 5 - (D) - e (4)

<Z(fj.u(fn)- (51)) + 5 () ()

€32

=2 i) | U G 4§ @) p(4) < S p0) () + S (D) e (4)
i€X2

=T (A) S (Ta) (i (A2) = (A)) 5 e (T) e (4) < o pr () - (A)
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Analogously we estimate: p (I'y, N f,;™ (A)) —p(Tn) -1 (A) > —e-p(Ty) - 1 (A). Both estimates
enable us to conclude: |u (T'y, N f,™ (A)) — p(Ty) - ( ) <e-pu(Tyn)-un(A). O

By Lemma the requirement of the proximity between f and f, is fulfilled. Hence f is
weak mixing.

5 Construction of the f-invariant measurable Riemannian

metric
Let wp denote the standard Riemannian metric on M = S! x [0, 1]. The following Lemma shows
that the conjugation map h,, = g, o D © ¢, 0 Dy, ~, constructed in section [2[is an isometry

with respect to wg on the elements of the partlal partition (,.

Lemma 5.1. Let Dlj,% (fn) € (n. Then hy|p—

() s an tsometry with respect to wq.
Yn,Yn \7"

Proof. As noted in Remark Dy, ~,. acts as an isometry on any element D;j’% (fn) € (n-

Next we observe that ¢,, is an isometry on such an element I, by the choices of 1 and €5 in the
construction of the conjugation map ¢, as well as the positioning of the elements I,,. Here the
“inner rotation map” is important

Moreover, we compute that ¢, ( ) lies in the ¢ good area’ of the map g,. But the prior ap-

plication of DW ., causes a translation of (1 + —3 + ..+ W) - u - 4e,, with some u < %2

in the r-coordinate. At first we observe that D 1 oy © bn (fn) is still contained in the same

(2434 +(3+k )

definition section of g,, by our choice of j; Thus we compare the caused trans-

lation with an = = P (k+11)6fkf£+1) -domain of the map g, = gape,5 On the r-axis.
) 2 on
nqn ‘[ngn™]

In case of 2+ 3-(k+ 1)+ @ > 3 4+ n — 1 the shifting is a multiple of such a domain
and then Dil 4 © On (fn) is still contained in the “good area” of g,. In the other case we write

1+ +... L = L with [ € Z and some rest term 2 .
Tttt gn "t 243 (k1) £ (EFL) +R < R< 243 (o 1)+ EEFD 1y
; l . i ; = i 2 cu -
Since o erny EEED u - dep, is a multiple of ;%= we consider q2+3_(k+1)+,€_<,‘;1)+1 u - 4e,. We
n n
have
1 TL2 5
o r(n—1)+1
n-u- [nqnn} ! <n qn 2 n -1
2n2.¢e, 2
4.r(n—1 5r(n—1)+1 13 9-r(n—1)+1
gy g =n'. Y < qn

by our assumptions on the numbers g, and o, in section[3.2] So this deviation is bounded by

2 4e, < 2 2n’ - ¢ 4
U - ae . -u - 4e
243 (bt 1)+ =5 41 T s e+ EGE ey [nq"”] !
dn gn
16n2 - ¢,
= £ . .
" on 243 (k1) 2
[nq } N dn

Then D;i,yn o Pn (fn) is still contained in the “good area” of g,.
Thus h,, acts as an isometry on the elements of the partition (,. O
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This Lemma implies that h;*!|, (D3 (L)) is an isometry as well.
A R TR
In the following we construct the f-invariant measurable Riemannian metric. This construction
parallels the approach in [GKO00|, section 4.8.. Therefor we put w, = (Hn_ 1)* wp. Each w,
is a smooth Riemannian metric because it is the pullback of a smooth metric via a C* (M)-
diffeomorphism. Since R}, +.Wo = wo the metric wy, is fy-invariant:

fown = (Hn °oRa, .,

= (H,;l)*wo = Wy,

oH Y (H Y wo=(HY) R, H:(H?Y)

n n An41 n

With the succeeding Lemmas we show that the limit we, = lim,,_ - w, exists u-almost every-
where and is the aimed f-invariant Riemannian metric.

Lemma 5.2. The sequence (wp), oy converges pi-a.e. to a limit we

Proof. For every N € N we have for every k > 0:
-1 \* -1 -1 —1\* —1\* (-1 —1 \*
WN4k = (HN+k) wo = (hN+ko'“ohN+1 o Hy ) wo = (HN ) ( N+ko...ohN+1) wo
Since the elements of the partition (, cover M except a set of measure at most % by Remark
Lemma shows that wy 4 coincides with wy = (Hg,l)* wp on a set of measure at least

1-— Z;o: N41 nz- As this measure approaches 1 for N — oo the sequence (Wn)pen converges on
a set of full measure. O

Lemma 5.3. The limit ws, s a measurable Riemannian metric.

Proof. The limit w, is a measurable map because it is the pointwise limit of the smooth metrics
wp, which in particular are measurable. By the same reasoning wo|, is symmetric for p-almost
every p € M. Furthermore w,, is positive definite, because w,, is positive definite for every n € N
and weo coincides with wy on TyM ® Ty M minus a set of measure at most Y - ., 5. Since
this is true for every N € N w,, is positive definite on a set of full measure. O
Remark 5.4. In the proof of the subsequent Lemma we will need Egoroff’s theorem (for example
[Ha65], §21, Theorem A): Let (N, d) denote a separable metric space. Given a sequence (¢n,),,cy
of N-valued measurable functions on a measure space (X, 3, u) and a measurable subset A C X,
p(A) < oo, such that (@), y converges p-a.e. on A to a limit function ¢. Then for every
€ > 0 there exists a measurable subset B C A such that p (B) < ¢ and (pn),,cy converges to ¢
uniformly on A\ B.

Lemma 5.5. wy, is f-invariant, i.e. ffws = Weo U-a.e€..

Proof. By Lemma the sequence (wy),y converges in the C*-topology pointwise almost
everywhere. Hence we obtain using Egoroff’s theorem: For every § > 0 there is a set Cs C M
such that u (M \ Cs) < ¢ and the convergence w, — wy is uniform on Cs.

The function f was constructed as the limit of the sequence (f,),cy in the C*-topology. Thus
fn = fto f —id in the C*®-topology. Since M is compact this convergence is uniform, too.
Furthermore the smoothness of f implies: J:*woo = f*limy_ oo wy = limy, o0 ffw,. Hereby we
compute on Cs: f*weo = lim,_ ((fnfn) wn) = lim,, oo (f;f;wn) = limy, oo frwn = Woo,
where we used the uniform convergence on Cjs in the last step. As this holds on every set Cj

with > 0 it also holds on the set J;.,Cs. This is a set of full measure and therefore the claim
follows. O

Hence the aimed f-invariant measurable Riemannian metric w, is constructed.
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